99 resultados para Weather variables
em Queensland University of Technology - ePrints Archive
Resumo:
The information on climate variations is essential for the research of many subjects, such as the performance of buildings and agricultural production. However, recorded meteorological data are often incomplete. There may be a limited number of locations recorded, while the number of recorded climatic variables and the time intervals can also be inadequate. Therefore, the hourly data of key weather parameters as required by many building simulation programmes are typically not readily available. To overcome this gap in measured information, several empirical methods and weather data generators have been developed. They generally employ statistical analysis techniques to model the variations of individual climatic variables, while the possible interactions between different weather parameters are largely ignored. Based on a statistical analysis of 10 years historical hourly climatic data over all capital cities in Australia, this paper reports on the finding of strong correlations between several specific weather variables. It is found that there are strong linear correlations between the hourly variations of global solar irradiation (GSI) and dry bulb temperature (DBT), and between the hourly variations of DBT and relative humidity (RH). With an increase in GSI, DBT would generally increase, while the RH tends to decrease. However, no such a clear correlation can be found between the DBT and atmospheric pressure (P), and between the DBT and wind speed. These findings will be useful for the research and practice in building performance simulation.
Resumo:
Local climate is a critical element in the design of energy efficient buildings. In this paper, ten years of historical weather data in Australia's eight capital cities were profiled and analysed to characterize the variations of climatic variables in Australia. The method of descriptive statistics was employed. Either the pattern of cumulative distribution and/or the profile of percentage distribution are presented. It was found that although weather variables vary with different locations, there is often a good, nearly linear relation between a weather variable and its cumulative percentage for the majority of middle part of the cumulative curves. By comparing the slopes of these distribution profiles, it may be possible to determine the relative range of changes of the particular weather variables for a given city. The implications of these distribution profiles of key weather variables on energy efficient building design are also discussed.
Resumo:
Local climate is a critical element in the design of buildings. In this paper, ten years of historical weather data in Australia's all eight capital cities are analyzed to characterize the variation profiles of climatic variables. The method of descriptive statistics is employed. Either the pattern of cumulative distribution and/or the profile of percentage distribution are used to graphically illustrate the similarity and difference between different study locations. It is found that although the weather variables vary with different locations, except for the extreme parts, there is often a good, nearly linear relation between weather variable and its cumulative percentage for the majority of middle part. The implication of these extreme parts and the slopes of the middle parts on building design is also discussed.
Resumo:
Dengue virus (DENV) transmission in Australia is driven by weather factors and imported dengue fever (DF) cases. However, uncertainty remains regarding the threshold effects of high-order interactions among weather factors and imported DF cases and the impact of these factors on autochthonous DF. A time-series regression tree model was used to assess the threshold effects of natural temporal variations of weekly weather factors and weekly imported DF cases in relation to incidence of weekly autochthonous DF from 1 January 2000 to 31 December 2009 in Townsville and Cairns, Australia. In Cairns, mean weekly autochthonous DF incidence increased 16.3-fold when the 3-week lagged moving average maximum temperature was <32 °C, the 4-week lagged moving average minimum temperature was ≥24 °C and the sum of imported DF cases in the previous 2 weeks was >0. When the 3-week lagged moving average maximum temperature was ≥32 °C and the other two conditions mentioned above remained the same, mean weekly autochthonous DF incidence only increased 4.6-fold. In Townsville, the mean weekly incidence of autochthonous DF increased 10-fold when 3-week lagged moving average rainfall was ≥27 mm, but it only increased 1.8-fold when rainfall was <27 mm during January to June. Thus, we found different responses of autochthonous DF incidence to weather factors and imported DF cases in Townsville and Cairns. Imported DF cases may also trigger and enhance local outbreaks under favorable climate conditions.
Resumo:
In this study we examined the impact of weather variability and tides on the transmission of Barmah Forest virus (BFV) disease and developed a weather-based forecasting model for BFV disease in the Gladstone region, Australia. We used seasonal autoregressive integrated moving-average (SARIMA) models to determine the contribution of weather variables to BFV transmission after the time-series data of response and explanatory variables were made stationary through seasonal differencing. We obtained data on the monthly counts of BFV cases, weather variables (e.g., mean minimum and maximum temperature, total rainfall, and mean relative humidity), high and low tides, and the population size in the Gladstone region between January 1992 and December 2001 from the Queensland Department of Health, Australian Bureau of Meteorology, Queensland Department of Transport, and Australian Bureau of Statistics, respectively. The SARIMA model shows that the 5-month moving average of minimum temperature (β = 0.15, p-value < 0.001) was statistically significantly and positively associated with BFV disease, whereas high tide in the current month (β = −1.03, p-value = 0.04) was statistically significantly and inversely associated with it. However, no significant association was found for other variables. These results may be applied to forecast the occurrence of BFV disease and to use public health resources in BFV control and prevention.
Resumo:
The dynamic interaction between building systems and external climate is extremely complex, involving a large number of difficult-to-predict variables. In order to study the impact of global warming on the built environment, the use of building simulation techniques together with forecast weather data are often necessary. Since all building simulation programs require hourly meteorological input data for their thermal comfort and energy evaluation, the provision of suitable weather data becomes critical. Based on a review of the existing weather data generation models, this paper presents an effective method to generate approximate future hourly weather data suitable for the study of the impact of global warming. Depending on the level of information available for the prediction of future weather condition, it is shown that either the method of retaining to current level, constant offset method or diurnal modelling method may be used to generate the future hourly variation of an individual weather parameter. An example of the application of this method to the different global warming scenarios in Australia is presented. Since there is no reliable projection of possible change in air humidity, solar radiation or wind characters, as a first approximation, these parameters have been assumed to remain at the current level. A sensitivity test of their impact on the building energy performance shows that there is generally a good linear relationship between building cooling load and the changes of weather variables of solar radiation, relative humidity or wind speed.
Resumo:
The roles of weather variability and sunspots in the occurrence of cyanobacteria blooms, were investigated using cyanobacteria cell data collected from the Fred Haigh Dam, Queensland, Australia. Time series generalized linear model and classification and regression (CART) model were used in the analysis. Data on notified cell numbers of cyanobacteria and weather variables over the periods 2001 and 2005 were provided by the Australian Department of Natural Resources and Water, and Australian Bureau of Meteorology, respectively. The results indicate that monthly minimum temperature (relative risk [RR]: 1.13, 95% confidence interval [CI]: 1.02-1.25) and rainfall (RR: 1.11; 95% CI: 1.03-1.20) had a positive association, but relative humidity (RR: 0.94; 95% CI: 0.91-0.98) and wind speed (RR:0.90; 95% CI: 0.82-0.98) were negatively associated with the cyanobacterial numbers, after adjustment for seasonality and auto-correlation. The CART model showed that the cyanobacteria numbers were best described by an interaction between minimum temperature, relative humidity, and sunspot numbers. When minimum temperature exceeded 18%C and relative humidity was under 66%, the number of cyanobacterial cells rose by 2.15-fold. We conclude that the weather variability and sunspot activity may affect cyanobacterial blooms in dams.
Resumo:
Predicting safety on roadways is standard practice for road safety professionals and has a corresponding extensive literature. The majority of safety prediction models are estimated using roadway segment and intersection (microscale) data, while more recently efforts have been undertaken to predict safety at the planning level (macroscale). Safety prediction models typically include roadway, operations, and exposure variables—factors known to affect safety in fundamental ways. Environmental variables, in particular variables attempting to capture the effect of rain on road safety, are difficult to obtain and have rarely been considered. In the few cases weather variables have been included, historical averages rather than actual weather conditions during which crashes are observed have been used. Without the inclusion of weather related variables researchers have had difficulty explaining regional differences in the safety performance of various entities (e.g. intersections, road segments, highways, etc.) As part of the NCHRP 8-44 research effort, researchers developed PLANSAFE, or planning level safety prediction models. These models make use of socio-economic, demographic, and roadway variables for predicting planning level safety. Accounting for regional differences - similar to the experience for microscale safety models - has been problematic during the development of planning level safety prediction models. More specifically, without weather related variables there is an insufficient set of variables for explaining safety differences across regions and states. Furthermore, omitted variable bias resulting from excluding these important variables may adversely impact the coefficients of included variables, thus contributing to difficulty in model interpretation and accuracy. This paper summarizes the results of an effort to include weather related variables, particularly various measures of rainfall, into accident frequency prediction and the prediction of the frequency of fatal and/or injury degree of severity crash models. The purpose of the study was to determine whether these variables do in fact improve overall goodness of fit of the models, whether these variables may explain some or all of observed regional differences, and identifying the estimated effects of rainfall on safety. The models are based on Traffic Analysis Zone level datasets from Michigan, and Pima and Maricopa Counties in Arizona. Numerous rain-related variables were found to be statistically significant, selected rain related variables improved the overall goodness of fit, and inclusion of these variables reduced the portion of the model explained by the constant in the base models without weather variables. Rain tends to diminish safety, as expected, in fairly complex ways, depending on rain frequency and intensity.
Resumo:
This research assesses the potential impact of weekly weather variability on the incidence of cryptosporidiosis disease using time series zero-inflated Poisson (ZIP) and classification and regression tree (CART) models. Data on weather variables, notified cryptosporidiosis cases and population size in Brisbane were supplied by the Australian Bureau of Meteorology, Queensland Department of Health, and Australian Bureau of Statistics, respectively. Both time series ZIP and CART models show a clear association between weather variables (maximum temperature, relative humidity, rainfall and wind speed) and cryptosporidiosis disease. The time series CART models indicated that, when weekly maximum temperature exceeded 31°C and relative humidity was less than 63%, the relative risk of cryptosporidiosis rose by 13.64 (expected morbidity: 39.4; 95% confidence interval: 30.9–47.9). These findings may have applications as a decision support tool in planning disease control and risk management programs for cryptosporidiosis disease.
Resumo:
This paper presents channel measurements and weather data collection experiments conducted in a rural environment for an innovative Multi-User-Single-Antenna (MUSA) MIMO-OFDM technology, proposed for rural areas. MUSA MIMO-OFDM uplink channels are established by placing six user terminals (UT) around one access point (AP). Generated terrain profiles and relative received power plots are presented based on the experimental data. According to the relative received signal, MUSA-MIMO-OFDM uplink channels experience temporal fading. Moreover, the correlation between the relative received power and weather variables are presented. Results show that all weather variables exhibit a negative average correlation with received power. Wind speed records the highest average negative correlation coefficient of -0.35. Local maxima of negative correlation, ranging from 0.49 to 0.78, between the weather variables and relative received signals were registered between 5-6 a.m. The highest measured correlation (-0.78) of this time of the day was exhibited by wind speed. These results show the extend of time variation effects experienced by MUSA-MIMO-OFDM channels deployed in rural environments.
Resumo:
The interaction and relationship between the global warming and the thermal performance buildings are dynamic in nature. In order to model and understand this behavior, different approaches, including keeping weather variable unchanged, morphing approach and diurnal modelling method, have been used to project and generate future weather data. Among these approaches, various assumptions on the change of solar radiation, air humidity and/or wind characteristics may be adopted. In this paper, an example to illustrate the generation of future weather data for the different global warming scenarios in Australia is presented. The sensitivity of building cooling loads to the possible changes of assumed values used in the future weather data generation is investigated. It is shown that with ± 10% change of the proposed future values for solar radiation, air humidity or wind characteristics, the corresponding change in the cooling load of the modeled sample office building at different Australian capital cities would not exceed 6%, 4% and 1.5% respectively. It is also found that with ±10% changes on the proposed weather variables for both the 2070-high future scenario and the current weather scenario, the corresponding change in the cooling loads at different locations may be weaker (up to 2% difference in Hobart for ±10% change in global solar radiation), similar (less than 0.6%) difference in Hobart for ±10% change in wind speed), or stronger (up to 1.6% difference in Hobart for ±10% change in relative humidity) in the 2070-high future scenario than in the current weather scenario.
Resumo:
Typical reference year (TRY) weather data is often used to represent the long term weather pattern for building simulation and design. Through the analysis of ten year historical hourly weather data for seven Australian major capital cities using the frequencies procedure of descriptive statistics analysis (by SPSS software), this paper investigates: • the closeness of the typical reference year (TRY) weather data in representing the long term weather pattern; • the variations and common features that may exist between relatively hot and cold years. It is found that for the given set of input data, in comparison with the other weather elements, the discrepancy between TRY and multiple years is much smaller for the dry bulb temperature, relative humidity and global solar irradiance. The overall distribution patterns of key weather elements are also generally similar between the hot and cold years, but with some shift and/or small distortion. There is little common tendency of change between the hot and the cold years for different weather variables at different study locations.
Resumo:
BACKGROUND Dengue fever (DF) outbreaks often arise from imported DF cases in Cairns, Australia. Few studies have incorporated imported DF cases in the estimation of the relationship between weather variability and incidence of autochthonous DF. The study aimed to examine the impact of weather variability on autochthonous DF infection after accounting for imported DF cases and then to explore the possibility of developing an empirical forecast system. METHODOLOGY/PRINCIPAL FINDS Data on weather variables, notified DF cases (including those acquired locally and overseas), and population size in Cairns were supplied by the Australian Bureau of Meteorology, Queensland Health, and Australian Bureau of Statistics. A time-series negative-binomial hurdle model was used to assess the effects of imported DF cases and weather variability on autochthonous DF incidence. Our results showed that monthly autochthonous DF incidences were significantly associated with monthly imported DF cases (Relative Risk (RR):1.52; 95% confidence interval (CI): 1.01-2.28), monthly minimum temperature ((o)C) (RR: 2.28; 95% CI: 1.77-2.93), monthly relative humidity (%) (RR: 1.21; 95% CI: 1.06-1.37), monthly rainfall (mm) (RR: 0.50; 95% CI: 0.31-0.81) and monthly standard deviation of daily relative humidity (%) (RR: 1.27; 95% CI: 1.08-1.50). In the zero hurdle component, the occurrence of monthly autochthonous DF cases was significantly associated with monthly minimum temperature (Odds Ratio (OR): 1.64; 95% CI: 1.01-2.67). CONCLUSIONS/SIGNIFICANCE Our research suggested that incidences of monthly autochthonous DF were strongly positively associated with monthly imported DF cases, local minimum temperature and inter-month relative humidity variability in Cairns. Moreover, DF outbreak in Cairns was driven by imported DF cases only under favourable seasons and weather conditions in the study.
Resumo:
Bactrocera tryoni is a polyphagous fruit fly, originally endemic to tropical and subtropical coastal eastern Australia, but now also widely distributed in temperate eastern Australia. In temperate parts of its range, B. tryoni populations show distinct seasonal peaks driven by changing seasonal climates, especially changing temperature. In contrast to temperate areas, the seasonal phenology of B. tryoni in subtropical and tropical parts of its range is poorly documented and the role of climate unknown. Using a large, historical (1940s and 1950s) fruit fly trapping data set, we present the seasonal phenology of B. tryoni at nine sites across Queensland for multiple (two to seven) years per site. We correlate monthly trap data for each site with monthly weather averages (temperature, rainfall and relative humidity) to investigate climatic influences. We also correlate observed population data with predicted population data generated by an existing B. tryoni population model. Supporting predictions from climate driven models, B. tryoni did show year-round breeding at most Queensland sites. However, contrary to predictions, there was a common pattern of a significant population decline in autumn and winter, followed by a rapid population increase in August and then one or more distinct peaks of abundance in spring and summer. Mean monthly fly abundance was significantly different across sites, but was not correlated with altitudinal, latitudinal or longitudinal gradients. There were very few significant correlations between monthly fly population size and weather variables for eight of the nine sites. For the southern site of Gatton fly population abundance was correlated with temperature. Results suggest that while climate factors may be influencing B. tryoni populations in southern subtropical Queensland, they appear to be having only minor or no influence in northern sub-tropical and tropical Queensland. In the discussion we focus on the role of other factors, particularly larval host plant availability, as likely drivers of B. tryoni abundance in tropical and subtropical parts of its range.
Resumo:
Background: It remains unclear whether it is possible to develop a spatiotemporal epidemic prediction model for cryptosporidiosis disease. This paper examined the impact of social economic and weather factors on cryptosporidiosis and explored the possibility of developing such a model using social economic and weather data in Queensland, Australia. ----- ----- Methods: Data on weather variables, notified cryptosporidiosis cases and social economic factors in Queensland were supplied by the Australian Bureau of Meteorology, Queensland Department of Health, and Australian Bureau of Statistics, respectively. Three-stage spatiotemporal classification and regression tree (CART) models were developed to examine the association between social economic and weather factors and monthly incidence of cryptosporidiosis in Queensland, Australia. The spatiotemporal CART model was used for predicting the outbreak of cryptosporidiosis in Queensland, Australia. ----- ----- Results: The results of the classification tree model (with incidence rates defined as binary presence/absence) showed that there was an 87% chance of an occurrence of cryptosporidiosis in a local government area (LGA) if the socio-economic index for the area (SEIFA) exceeded 1021, while the results of regression tree model (based on non-zero incidence rates) show when SEIFA was between 892 and 945, and temperature exceeded 32°C, the relative risk (RR) of cryptosporidiosis was 3.9 (mean morbidity: 390.6/100,000, standard deviation (SD): 310.5), compared to monthly average incidence of cryptosporidiosis. When SEIFA was less than 892 the RR of cryptosporidiosis was 4.3 (mean morbidity: 426.8/100,000, SD: 319.2). A prediction map for the cryptosporidiosis outbreak was made according to the outputs of spatiotemporal CART models. ----- ----- Conclusions: The results of this study suggest that spatiotemporal CART models based on social economic and weather variables can be used for predicting the outbreak of cryptosporidiosis in Queensland, Australia.