6 resultados para Wasps.
em Queensland University of Technology - ePrints Archive
Resumo:
Diachasmimorpha kraussii (Hymenoptera: Braconidae: Opiinae) is a koinobiont larval parasitoid of dacine fruit flies of the genus Bactrocera (Diptera: Tephritidae) in its native range (Australia, Papua New Guinea, Solomon Islands). The wasp is a potentially important control agent for pest fruit flies, having been considered for both classical and inundative biological control releases. I investigated the host searching, selection and utilisation mechanisms of the wasp against native host flies within its native range (Australia). Such studies are rare in opiine research where the majority of studies, because of the applied nature of the research, have been carried out using host flies and environments which are novel to the wasps. Diachasmimorpha kraussii oviposited equally into maggots of four fruit fly species, all of which coexist with the wasp in its native range (Australia), when tested in a choice trial using a uniform artificial diet media. While eggs laid into Bactrocera tryoni and B. jarvisi developed successfully through to adult wasps, eggs laid into B. cucumis and B. cacuminata were encapsulated. These results suggest that direct larval cues are not an important element in host selection by D. kraussii. Further exploring how D. kraussii locates suitable host larvae, I investigated the role of plant cues in host searching and selection. This was examined in a laboratory choice trial using uninfested fruit or fruit infested with either B. tryoni or B. jarvisi maggots. The results showed a consistent preference ranking among infested fruits by the wasp, with guava and peach most preferred, but with no response to uninfested fruits. Thus, it appears the wasp uses chemical cues emitted in response to fruit fly larval infestation for host location, but does not use cues from uninfested fruits. To further tease apart the role of (i) suitable and non-suitable maggots, (ii) infested and uninfested fruits of different plant species, and (iii) adult flies, in wasp host location and selection, I carried out a series of behavioural tests where I manipulated these attributes in a field cage. These trials confirmed that D. kraussii did not respond to cues in uninfested fruits, that there were consistent preferences by the wasps for different maggot infested fruits, that fruit preference did not vary depending on whether the maggots were physiologically suitable or not suitable for wasp offspring development, and finally, that adult flies appear to play a secondary role as indicators of larval infestation. To investigate wasp behaviour in an unrestrained environment, I concurrently observed diurnal foraging behaviours of both the wasp and one of its host fly in a small nectarine orchard. Wasp behaviour, both spatially and temporally, was not correlated with adult fruit fly behaviour or abundance. This study reinforced the point that infested fruit seems to be the primary cue used by foraging wasps. Wasp and fly feeding and mating was not observed in the orchard, implying these activities are occurring elsewhere. It is highly unlikely that these behaviours were happening within the orchard during the night as both insects are diurnal. As the final component of investigating host location, I carried out a habitat preference study for the wasp at the landscape scale. Using infested sentinel fruits, I tested the parasitism rate of B. tryoni in eucalyptus sclerophyll forest, rainforest and suburbia in South East Queensland. Although, rainforest is the likely endemic habitat of both B. tryoni and D. kraussii, B. tryoni abundance is significantly greater in suburban environments followed by eucalyptus sclerophyll forest. Parasitism rate was found to be higher in suburbia than in the eucalyptus sclerophyll forest, while no parasitism was recorded in the rainforest. This result suggests that wasps orient within the landscape towards areas of high host density and are not restricted by habitat types. Results from the different experiments suggest that host searching, selection and utilisation behaviour of D. kraussii are strongly influenced by cues associated with fruit fly larval feeding. Cues from uninfested fruits, the host larvae themselves, and the adult host flies play minimal roles. The discussion focuses on the fit of D. kraussii to Vinson’s classical parasitoid host location model and the implications of results for biological control, including recommendations for host and plant preference screening protocols and release regimes.
Resumo:
Opiine wasps (Hymenoptera: Braconidae: Opiinae) are parasitoids of dacine fruit flies (Diptera: Tephritidae: Dacinae), the primary horticultural pests of Australia and the South Pacific. Effective use of opiines for biological control of fruit flies is limited by poor taxonomy and identification difficulties. To overcome these problems, this thesis had two aims: (i) to carry out traditional taxonomic research on the fruit fly infesting opine braconids of Australia and the South Pacific; and (ii) to transfer the results of the taxonomic research into user friendly diagnostic tools. Curated wasp material was borrowed from all major Australian museum collections holding specimens. This was supplemented by a large body of material gathered as part of a major fruit fly project in Papua New Guinea: nearly 4000 specimens were examined and identified. Each wasp species was illustrated using traditional scientific drawings, full colour photomicroscopy and scanning electron microscopy. An electronic identification key was developed using Lucid software and diagnostic images were loaded on the web-based Pest and Diseases Image Library (PaDIL). A taxonomic synopsis and distribution and host records for each of the 15 species of dacine-parasitising opiine braconids found in the South Pacific is presented. Biosteres illusorius Fischer (1971) was formally transferred to the genus Fopius and a new species, Fopius ferrari Carmichael and Wharton (2005), was described. Other species dealt with were Diachasmimorpha hageni (Fullaway, 1952), D. kraussii (Fullaway, 1951), D. longicaudata (Ashmead, 1905), D. tryoni (Cameron, 1911), Fopius arisanus (Sonan, 1932), F. deeralensis (Fullaway, 1950), F. schlingeri Wharton (1999), Opius froggatti Fullaway (195), Psyttalia fijiensis (Fullaway, 1936), P. muesebecki (Fischer, 1963), P. novaguineensis (Szépliget, 1900i) and Utetes perkinsi (Fullaway, 1950). This taxonomic component of the thesis has been formally published in the scientific literature. An interactive diagnostics package (“OpiineID”) was developed, the centre of which is a Lucid based multi-access key. Because the diagnostics package is computer based, without the space limitations of the journal publication, there is no pictorial limit in OpiineID and so it is comprehensively illustrated with SEM photographs, full colour photographs, line drawings and fully rendered illustrations. The identification key is only one small component of OpiineID and the key is supported by fact sheets with morphological descriptions, host associations, geographical information and images. Each species contained within the OpiineID package has also been uploaded onto the PaDIL website (www.padil.gov.au). Because the identification of fruit fly parasitoids is largely of concern to fruit fly workers, rather than braconid specialists, this thesis deals directly with an area of growing importance to many areas of pure and applied biology; the nexus between taxonomy and diagnostics. The Discussion chapter focuses on this area, particularly the opportunities offered by new communication and information tools as new ways delivering the outputs of taxonomic science.
Resumo:
Abstract A field survey for natural enemies of Paropsis atomaria was conducted at two south-eastern Queensland Eucalyptus cloeziana plantation sites during 2004–2005. Primary egg and larval parasitoids and associated hyperparasitoids were identified to genus or species, and parasitism rates were determined throughout the season. Predators were identified to family level but their impact was not quantified. P. atomaria adults were also examined as potential hosts for parasitic mites and nematodes. An undescribed species of Neopolycystus (Pteromalidae) was the major primary egg parasitoid species reared from egg batches, parasitising half of all egg batches collected. Three hyperparasitoid species (Baeoanusia albifunicle (Encyrtidae), Neblatticida sp. (Encyrtidae) and Aphaneromella sp. (Platygasteridae) were present, representing around one-quarter to one-third of all emergent wasps; this is the first host association record for Neopolycystus–B. albifunicle. In contrast to populations of P. atomaria from the Australian Capital Territory, primary larval parasitism was very low, around 1%, and attributable only to the tachinid flies Anagonia sp. and Paropsivora sp. However, the presence of the sit-and-wait larval hyperparasitoid, Perilampus sp. (Perilampidae) was high, emerging from around 17% of tachinid pupae, with planidia infesting a further 40% of unparasitised hosts. Three species of podapolipid mites parasitised sexually mature P. atomaria adults, while no nematodes were found in this study. Spiders were the most common predators and their abundance was positively correlated with P. atomaria adult and egg numbers. Although natural enemy species composition was identical between our two study sites, significant differences in abundance and frequency were found between sites
Resumo:
Diachasmimorpha kraussii is an endoparasitoid of larval dacine fruit flies. To date the only host preference study done on D. kraussii has used fruit flies from outside its native range (Australia, Papua New Guinea, Solomon Islands). In contrast, this paper investigates host preference for four fly species (Bactrocera cacuminata, B. cucumis, B. jarvisi and B. tryoni) which occur sympatrically with the wasp in the Australian component of the native range. Diachasmimorpha kraussii oviposition preference, host suitability (parasitism rate, number of progeny, sex ratio), and offspring performance measures (body length, hind tibial length, developmental time) were investigated with respect to the four fly species in the laboratory in both no-choice and choice situations. The parasitoid accepted all four fruit fly species for oviposition in both no-choice and choice tests; however, adult wasps only emerged from B. jarvisi and B. tryoni. Through dissection, it was demonstrated that parasitoid eggs were encapsulated in both B. cacuminata and B. cucumis. Between the two suitable hosts, measurements of oviposition preference, host suitability and offspring performance measurements either did not vary significantly, or varied in an inconsistent manner. Based on our results, and a related study by other authors, we conclude that D. krausii, at the point of oviposition, cannot discriminate between physiologically suitable and unsuitable hosts.
Resumo:
1 Diachasmimorpha krausii is a braconid parasitoid of larval tephritid fruit flies, which feed cryptically within host fruit. At the ovipositor probing stage, the wasp cannot discriminate between hosts that are physiologically suitable or unsuitable for offspring development and must use other cues to locate suitable hosts. 2 To identify the cues used by the parasitoid to find suitable hosts, we offered, to free flying wasps, different combinations of three fruit fly species (Bactrocera tryoni, Bactrocera cacuminata, Bactrocera cucumis), different life stages of those flies (adults and larvae) and different host plants (Solanum lycopersicon, Solanum mauritianum, Cucurbita pepo). In the laboratory, the wasp will readily oviposit into larvae of all three flies but successfully develops only in B. tryoni. Bactrocera tryoni commonly infests S. lycopersicon (tomato), rarely S. mauritianum (wild tobacco) but never C. pepo (zucchini). The latter two plant species are common hosts for B. cacuminata and B. cucumis, respectively. 3 The parasitoid showed little or no response to uninfested plants of any of the test species. The presence of adult B. tryoni, however, increased parasitoid residency time on uninfested tomato. 4 When the three fruit types were all infested with larvae, parasitoid response was strongest to tomato, regardless of whether the larvae were physiologically suitable or unsuitable for offspring development. By contrast, zucchini was rarely visited by the wasp, even when infested with B. tryoni larvae. 5 Wild tobacco was infrequently visited when infested with B. cacuminata larvae but was more frequently visited, with greater parasitoid residency time and probing, when adult flies (either B. cacuminata or B. tryoni) were also present. 6 We conclude that herbivore-induced, nonspecific host fruit wound volatiles were the major cue used by foraging D. krausii. Although positive orientation to infested host plants is well known from previous studies on opiine braconids, the failure of the wasp to orientate to some plants even when infested with physiologically suitable larvae, and the secondary role played by adult fruit flies in wasp host searching, are newly-identified mechanisms that may aid parasitoid host location in environments where both physiologically suitable and unsuitable hosts occur.