5 resultados para WILDLAND FIREFIGHTERS

em Queensland University of Technology - ePrints Archive


Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Exposure to aqueous film forming foam (AFFF) was evaluated in 149 firefighters working at AFFF training facilities in Australia by analysis of PFOS and related compounds in serum. A questionnaire was designed to capture information about basic demographic factors, lifestyle factors and potential occupational exposure (such as work history and self-reported skin contact with foam). The results showed that a number of factors were associated with PFAA serum concentrations. Blood donation was found to be linked to low PFAA levels, and the concentrations of PFOS and PFHxS were found to be positively associated with years of jobs with AFFF contact. The highest levels of PFOS and PFHxS were one order of magnitude higher compared to the general population in Australia and Canada. Study participants who had worked ten years or less had levels of PFOS that were similar to or only slightly above those of the general population. This coincides with the phase out of 3M AFFF from all training facilities in 2003, and suggests that the exposures to PFOS and PFHxS in AFFF have declined in recent years. Self-reporting of skin contact and frequency of contact were used as an index of exposure. Using this index, there was no relationship between PFOS levels and skin exposure. This index of exposure is limited as it relies on self-report and it only considers skin exposure to AFFF, and does not capture other routes of potential exposure. Possible associations between serum PFAA concentrations and five biochemical outcomes were assessed. The outcomes were serum cholesterol, triglycerides, high-density lipoproteins, low density lipoproteins, and uric acid. No statistical associations between any of these endpoints and serum PFAA concentrations were observed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fluorinated surfactant-based aqueous film-forming foams (AFFFs) are made up of per- and polyfluorinated alkyl substances (PFAS) and are used to extinguish fires involving highly flammable liquids. The use of perfluorooctanesulfonic acid (PFOS) and other perfluoroalkyl acids (PFAAs) in some AFFF formulations has been linked to substantial environmental contamination. Recent studies have identified a large number of novel and infrequently reported fluorinated surfactants in different AFFF formulations. In this study, a strategy based on a case-control approach using quadrupole time-of-flight tandem mass spectrometry (QTOF-MS/MS) and advanced statistical methods has been used to extract and identify known and unknown PFAS in human serum associated with AFFF-exposed firefighters. Two target sulfonic acids [PFOS and perfluorohexanesulfonic acid (PFHxS)], three non-target acids [perfluoropentanesulfonic acid (PFPeS), perfluoroheptanesulfonic acid (PFHpS), and perfluorononanesulfonic acid (PFNS)], and four unknown sulfonic acids (Cl-PFOS, ketone-PFOS, ether-PFHxS, and Cl-PFHxS) were exclusively or significantly more frequently detected at higher levels in firefighters compared to controls. The application of this strategy has allowed for identification of previously unreported fluorinated chemicals in a timely and cost-efficient way.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

House loss during unplanned bushfires is a complex phenomenon where design, configuration, material and siting, can significantly influence the loss. In collaboration with the Bushfire Cooperative Research Centre the CSIRO has developed a tool to assess the vulnerability of a specific house at the urban interface. The tool is based on a spatial profiling of urban assets including their design, material, surrounding objects and their relationship amongst one another. The analysis incorporates both probabilistic and deterministic parameters, and is based on the impact of radiant heat, flame and embers on the surrounding elements and the structure itself. It provides a breakdown of the attributes and design parameters that contribute to the vulnerability level. This paper describes the tool which allows the user to explore the vulnerability of a house to varying levels of bushfire attacks. The tool is aimed at government agencies interested in building design, town planning and community education for bushfire risk mitigation.