3 resultados para Videogrammetry
em Queensland University of Technology - ePrints Archive
Resumo:
Aerial hawking bats use intense echolocation calls to search for insect prey. Their calls have evolved into the most intense airborne animal vocalisations. Yet our knowledge about call intensities in the field is restricted to a small number of species. We describe a novel stereo videogrammetry method used to study flight and echolocation behaviour, and to measure call source levels of the aerial hawking bat Eptesicus bottae (Vespertilionidae). Bats flew close to their predicted minimum power speed. Source level increased with call duration; the loudest call of E. bottae was at 133 dB peSPL. The calculated maximum detection distance for large flying objects (e.g. large prey, conspecifics) was up to 21 m. The corresponding maximum echo delay is almost exactly the duration of one wing beat in E. bottae and this also is its preferred pulse interval. These results, obtained by using videogrammetry to track bats in the field, corroborate earlier findings from other species from acoustic tracking methods.
Resumo:
Ecological dynamics characterizes adaptive behavior as an emergent, self-organizing property of interpersonal interactions in complex social systems. The authors conceptualize and investigate constraints on dynamics of decisions and actions in the multiagent system of team sports. They studied coadaptive interpersonal dynamics in rugby union to model potential control parameter and collective variable relations in attacker–defender dyads. A videogrammetry analysis revealed how some agents generated fluctuations by adapting displacement velocity to create phase transitions and destabilize dyadic subsystems near the try line. Agent interpersonal dynamics exhibited characteristics of chaotic attractors and informational constraints of rugby union boxed dyadic systems into a low dimensional attractor. Data suggests that decisions and actions of agents in sports teams may be characterized as emergent, self-organizing properties, governed by laws of dynamical systems at the ecological scale. Further research needs to generalize this conceptual model of adaptive behavior in performance to other multiagent populations.
Resumo:
In the region of self-organized criticality (SOC) interdependency between multi-agent system components exists and slight changes in near-neighbor interactions can break the balance of equally poised options leading to transitions in system order. In this region, frequency of events of differing magnitudes exhibits a power law distribution. The aim of this paper was to investigate whether a power law distribution characterized attacker-defender interactions in team sports. For this purpose we observed attacker and defender in a dyadic sub-phase of rugby union near the try line. Videogrammetry was used to capture players’ motion over time as player locations were digitized. Power laws were calculated for the rate of change of players’ relative position. Data revealed that three emergent patterns from dyadic system interactions (i.e., try; unsuccessful tackle; effective tackle) displayed a power law distribution. Results suggested that pattern forming dynamics dyads in rugby union exhibited SOC. It was concluded that rugby union dyads evolve in SOC regions suggesting that players’ decisions and actions are governed by local interactions rules.