2 resultados para Vibrometry

em Queensland University of Technology - ePrints Archive


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Weta possess typical Ensifera ears. Each ear comprises three functional parts: two equally sized tympanal membranes, an underlying system of modified tracheal chambers, and the auditory sensory organ, the crista acustica. This organ sits within an enclosed fluid-filled channel-previously presumed to be hemolymph. The role this channel plays in insect hearing is unknown. We discovered that the fluid within the channel is not actually hemolymph, but a medium composed principally of lipid from a new class. Three-dimensional imaging of this lipid channel revealed a previously undescribed tissue structure within the channel, which we refer to as the olivarius organ. Investigations into the function of the olivarius reveal de novo lipid synthesis indicating that it is producing these lipids in situ from acetate. The auditory role of this lipid channel was investigated using Laser Doppler vibrometry of the tympanal membrane, which shows that the displacement of the membrane is significantly increased when the lipid is removed from the auditory system. Neural sensitivity of the system, however, decreased upon removal of the lipid-a surprising result considering that in a typical auditory system both the mechanical and auditory sensitivity are positively correlated. These two results coupled with 3D modelling of the auditory system lead us to hypothesize a model for weta audition, relying strongly on the presence of the lipid channel. This is the first instance of lipids being associated with an auditory system outside of the Odentocete cetaceans, demonstrating convergence for the use of lipids in hearing.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper constitutes a major attempt to associate tympanic deflections with the mechanoreceptor organ location in an acoustic insect. The New Zealand tree weta (Hemideina thoracica) has tympanal ears located on each of the prothoracic tibiae. The tympana exhibit a sclerotized oval plate, membranous processes bulging out from the tibial cuticle and many loosely suspended ripples. We used microscanning laser Doppler vibrometry to determine how such a tympanal membrane vibrates in response to sound and whether the sclerotized region plays a role in hearing. The tympanum displays a single resonance at the calling frequency of the male, an unusual example of an insect tympana acting as a narrow bandpass filter. Both tympana resonate in phase with the stimulus and with each other. Histological sections show that the tympanal area is divided into two distinct regions, as in other ensiferans. An oval plate lies in the middle of a thickened region and is surrounded by a transparent and uniformly thin region. It is hinged dorsally to the tympanal rim and thus resembles the model of a ‘hinged flap’. The thickened region appears to act as a damping mass on the oscillation of the thin region, and vibration displacement is reduced in this area. The thinner area vibrates with higher amplitude, inducing mechanical pressure on the dorsal area adjacent to the crista acustica. We present a new model showing how the thickened region might confer a mechanical gain onto the activation of the crista acustica sensory neurons during the sound-induced oscillations.