97 resultados para Vertical axis
em Queensland University of Technology - ePrints Archive
Resumo:
Background: Measurement accuracy is critical for biomechanical gait assessment. Very few studies have determined the accuracy of common clinical rearfoot variables between cameras with different collection frequencies. Research question: What is the measurement error for common rearfoot gait parameters when using a standard 30Hz digital camera compared to 100Hz camera? Type of study: Descriptive. Methods: 100 footfalls were recorded from 10 subjects ( 10 footfalls per subject) running on a treadmill at 2.68m/s. A high-speed digital timer, accurate within 1ms served as an external reference. Markers were placed along the vertical axis of the heel counter and the long axis of the shank. 2D coordinates for the four markers were determined from heel strike to heel lift. Variables of interest included time of heel strike (THS), time of heel lift (THL), time to maximum eversion (TMax), and maximum rearfoot eversion angle (EvMax). Results: THS difference was 29.77ms (+/- 8.77), THL difference was 35.64ms (+/- 6.85), and TMax difference was 16.50ms (+/- 2.54). These temporal values represent a difference equal to 11.9%, 14.3%, and 6.6% of the stance phase of running gait, respectively. EvMax difference was 1.02 degrees (+/- 0.46). Conclusions: A 30Hz camera is accurate, compared to a high-frequency camera, in determining TMax and EvMax during a clinical gait analysis. However, relatively large differences, in excess of 12% of the stance phase of gait, for THS and THL variables were measured.
Resumo:
In this study, we evaluated agreement among three generations of ActiGraph (TM) accelerometers in children and adolescents. Twenty-nine participants (mean age = 14.2 +/- 3.0 years) completed two laboratory-based activity sessions, each lasting 60 min. During each session, participants concurrently wore three different models of the ActiGraph (TM) accelerometers (GT1M, GT3X, GT3X+). Agreement among the three models for vertical axis counts, vector magnitude counts, and time spent in moderate-to-vigorous physical exercise (MVPA) was evaluated by calculating intraclass correlation coefficients and Bland-Altman plots. The intraclass correlation coefficient for total vertical axis counts, total vector magnitude counts, and estimated MVPA was 0.994 (95% CI = 0.989-0.996), 0.981 (95% CI = 0.969-0.989), and 0.996 (95% CI = 0.989-0.998), respectively. Inter-monitor differences for total vertical axis and vector magnitude counts ranged from 0.3% to 1.5%, while inter-monitor differences for estimated MVPA were equal to or close to zero. On the basis of these findings, we conclude that there is strong agreement between the GT1M, GT3X, and GT3X+ activity monitors, thus making it acceptable for researchers and practitioners to use different ActiGraph (TM) models within a given study.
Resumo:
Osseointegration has been introduced in the orthopaedic surgery in the 1990’s in Gothenburg (Sweden). To date, there are two frequently used commercially available human implants: the OPRA (Integrum, Sweden) and ILP (Orthodynamics, Germany) systems. The rehabilitation program with both systems include some form of static load bearing exercises. These latter involved following a load progression that is monitored by the bathroom scale, providing only the load applied on the vertical axis. The loading data could be analysed through different biomechanical variables. For instance, the load compliance, corresponding to the difference between the load recommended (LR) and the load actually applied on the implant, will be presented here.
Resumo:
Background Physical conditions through gait and other functional task are parameters to consider for frailty detection. The aim of the present study is to measure and describe the variability of acceleration, angular velocity and trunk displacement in the ten meter Extended Timed Get-Up-and-Go test in two groups of frail and non-frail elderly people through instrumentation with the iPhone4® smartphone. Secondly, to analyze the differences and performance of the variance between the study groups (frail and non-frail). This is a cross-sectional study of 30 subjects aged over 65 years, 14 frail subjects and 16 non-frail subjects. Results The highest difference between groups in the Sit-to-Stand and Stand-to-Sit subphases was in the y axis (vertical vector). The minimum acceleration in the Stand-to-Sit phase was -2.69 (-4.17 / -0.96) m/s2 frail elderly versus -8.49 (-12.1 / -5.23) m/s2 non-frail elderly, p < 0.001. In the Gait Go and Gait Come subphases the biggest differences found between the groups were in the vertical axis: -2.45 (-2.77 /-1.89) m/s2 frail elderly versus -5.93 (-6.87 / -4.51) m/s2 non-frail elderly, p < 0.001. Finally, with regards to the turning subphase, the statistically significant differences found between the groups were greater in the data obtained from the gyroscope than from the accelerometer (the gyroscope data for the mean maximum peak value for Yaw movement angular velocity in the frail elderly was specifically 25.60°/s, compared to 112.8°/s for the non-frail elderly, p < 0.05). Conclusions The inertial sensor fitted in the iPhone4® is capable of studying and analyzing the kinematics of the different subphases of the Extended Timed Up and Go test in frail and non-frail elderly people. For the Extended Timed Up and Go test, this device allows more sensitive differentiation between population groups than the traditionally used variable, namely time.
Resumo:
PURPOSE To develop and test decision tree (DT) models to classify physical activity (PA) intensity from accelerometer output and Gross Motor Function Classification System (GMFCS) classification level in ambulatory youth with cerebral palsy (CP); and 2) compare the classification accuracy of the new DT models to that achieved by previously published cut-points for youth with CP. METHODS Youth with CP (GMFCS Levels I - III) (N=51) completed seven activity trials with increasing PA intensity while wearing a portable metabolic system and ActiGraph GT3X accelerometers. DT models were used to identify vertical axis (VA) and vector magnitude (VM) count thresholds corresponding to sedentary (SED) (<1.5 METs), light PA (LPA) (>/=1.5 and <3 METs) and moderate-to-vigorous PA (MVPA) (>/=3 METs). Models were trained and cross-validated using the 'rpart' and 'caret' packages within R. RESULTS For the VA (VA_DT) and VM decision trees (VM_DT), a single threshold differentiated LPA from SED, while the threshold for differentiating MVPA from LPA decreased as the level of impairment increased. The average cross-validation accuracy for the VC_DT was 81.1%, 76.7%, and 82.9% for GMFCS levels I, II, and III, respectively. The corresponding cross-validation accuracy for the VM_DT was 80.5%, 75.6%, and 84.2%, respectively. Within each GMFCS level, the decision tree models achieved better PA intensity recognition than previously published cut-points. The accuracy differential was greatest among GMFCS level III participants, in whom the previously published cut-points misclassified 40% of the MVPA activity trials. CONCLUSION GMFCS-specific cut-points provide more accurate assessments of MVPA levels in youth with CP across the full spectrum of ambulatory ability.
Resumo:
Purpose: We term the visual field position from which the pupil appears most nearly circular as the pupillary circular axis (PCAx). The aim was to determine and compare the horizontal and vertical co-ordinates of the PCAx and optical axis from pupil shape and refraction information for only the horizontal meridian of the visual field. Method: The PCAx was determined from the changes with visual field angle in the ellipticity and orientation of pupil images out to ±90° from fixation along the horizontal meridian for the right eyes of 30 people. This axis was compared with the optical axis determined from the changes in the astigmatic components of the refractions for field angles out to ±35° in the same meridian. Results: The mean estimated horizontal and vertical field coordinates of the PCAx were (‒5.3±1.9°, ‒3.2±1.5°) compared with (‒4.8±5.1°, ‒1.5±3.4°) for the optical axis. The vertical co-ordinates of the two axes were just significantly different (p =0.03) but there was no significant correlation between them. Only the horizontal coordinate of the PCAx was significantly related to the refraction in the group. Conclusion: On average, the PCAx is displaced from the line-of-sight by about the same angle as the optical axis but there is more inter-subject variation in the position of the optical axis. When modelling the optical performance of the eye, it appears reasonable to assume that the pupil is circular when viewed along the line-of-sight.
Resumo:
This study investigated the longitudinal performance of 378 students who completed mathematics items rich in graphics. Specifically, this study explored student performance across axis (e.g., numbers lines), opposed-position (e.g., line and column graphs) and circular (e.g., pie charts) items over a three-year period (ages 9-11 years). The results of the study revealed significant performance differences in the favour of boys on graphics items that were represented in horizontal and vertical displays. There were no gender differences on items that were represented in a circular manner.