116 resultados para Ventricular Function, Left
em Queensland University of Technology - ePrints Archive
Resumo:
For the last two decades heart disease has been the highest single cause of death for the human population. With an alarming number of patients requiring heart transplant, and donations not able to satisfy the demand, treatment looks to mechanical alternatives. Rotary Ventricular Assist Devices, VADs, are miniature pumps which can be implanted alongside the heart to assist its pumping function. These constant flow devices are smaller, more efficient and promise a longer operational life than more traditional pulsatile VADs. The development of rotary VADs has focused on single pumps assisting the left ventricle only to supply blood for the body. In many patients however, failure of both ventricles demands that an additional pulsatile device be used to support the failing right ventricle. This condition renders them hospital bound while they wait for an unlikely heart donation. Reported attempts to use two rotary pumps to support both ventricles concurrently have warned of inherent haemodynamic instability. Poor balancing of the pumps’ flow rates quickly leads to vascular congestion increasing the risk of oedema and ventricular ‘suckdown’ occluding the inlet to the pump. This thesis introduces a novel Bi-Ventricular Assist Device (BiVAD) configuration where the pump outputs are passively balanced by vascular pressure. The BiVAD consists of two rotary pumps straddling the mechanical passive controller. Fluctuations in vascular pressure induce small deflections within both pumps adjusting their outputs allowing them to maintain arterial pressure. To optimise the passive controller’s interaction with the circulation, the controller’s dynamic response is optimised with a spring, mass, damper arrangement. This two part study presents a comprehensive assessment of the prototype’s ‘viability’ as a support device. Its ‘viability’ was considered based on its sensitivity to pathogenic haemodynamics and the ability of the passive response to maintain healthy circulation. The first part of the study is an experimental investigation where a prototype device was designed and built, and then tested in a pulsatile mock circulation loop. The BiVAD was subjected to a range of haemodynamic imbalances as well as a dynamic analysis to assess the functionality of the mechanical damper. The second part introduces the development of a numerical program to simulate human circulation supported by the passively controlled BiVAD. Both investigations showed that the prototype was able to mimic the native baroreceptor response. Simulating hypertension, poor flow balancing and subsequent ventricular failure during BiVAD support allowed the passive controller’s response to be assessed. Triggered by the resulting pressure imbalance, the controller responded by passively adjusting the VAD outputs in order to maintain healthy arterial pressures. This baroreceptor-like response demonstrated the inherent stability of the auto regulating BiVAD prototype. Simulating pulmonary hypertension in the more observable numerical model, however, revealed a serious issue with the passive response. The subsequent decrease in venous return into the left heart went unnoticed by the passive controller. Meanwhile the coupled nature of the passive response not only decreased RVAD output to reduce pulmonary arterial pressure, but it also increased LVAD output. Consequently, the LVAD increased fluid evacuation from the left ventricle, LV, and so actually accelerated the onset of LV collapse. It was concluded that despite the inherently stable baroreceptor-like response of the passive controller, its lack of sensitivity to venous return made it unviable in its present configuration. The study revealed a number of other important findings. Perhaps the most significant was that the reduced pulse experienced during constant flow support unbalanced the ratio of effective resistances of both vascular circuits. Even during steady rotary support therefore, the resulting ventricle volume imbalance increased the likelihood of suckdown. Additionally, mechanical damping of the passive controller’s response successfully filtered out pressure fluctuations from residual ventricular function. Finally, the importance of recognising inertial contributions to blood flow in the atria and ventricles in a numerical simulation were highlighted. This thesis documents the first attempt to create a fully auto regulated rotary cardiac assist device. Initial results encourage development of an inlet configuration sensitive to low flow such as collapsible inlet cannulae. Combining this with the existing baroreceptor-like response of the passive controller will render a highly stable passively controlled BiVAD configuration. The prototype controller’s passive interaction with the vasculature is a significant step towards a highly stable new generation of artificial heart.
Resumo:
A physiological control system was developed for a rotary left ventricular assist device (LVAD) in which the target pump flow rate (LVADQ) was set as a function of left atrial pressure (LAP), mimicking the Frank-Starling mechanism. The control strategy was implemented using linear PID control and was evaluated in a pulsatile mock circulation loop using a prototyped centrifugal pump by varying pulmonary vascular resistance to alter venous return. The control strategy automatically varied pump speed (2460 to 1740 to 2700 RPM) in response to a decrease and subsequent increase in venous return. In contrast, a fixed-speed pump caused a simulated ventricular suction event during low venous return and higher ventricular volumes during high venous return. The preload sensitivity was increased from 0.011 L/min/mmHg in fixed speed mode to 0.47L/min/mmHg, a value similar to that of the native healthy heart. The sensitivity varied automatically to maintain the LAP and LVADQ within a predefined zone. This control strategy requires the implantation of a pressure sensor in the left atrium and a flow sensor around the outflow cannula of the LVAD. However, appropriate pressure sensor technology is not yet commercially available and so an alternative measure of preload such as pulsatility of pump signals should be investigated.
Resumo:
The shortage of donor hearts for patients with end stage heart failure has accelerated the development of ventricular assist devices (VAD) that act as a replacement heart. Mechanical devices involving pulsatile, axial and centrifugal devices have been proposed. Recent clinical developments indicate that centrifugal devices are not only beneficial for bridge to transplantation applications, but may also aid myocardial recovery. The results of a recent study have shown that patients who received a VAD have extended lives and improved quality of life compared to recipients of drug therapy. Unfortunately 25% of these patients develop right heart failure syndrome, sepsis and multi-organ failure. It was reported that 17% of patients initially receiving an LVAD later required a right ventricular assist device (RVAD). Hence, current research focus is in the development of a bi-ventricular assist device (BVAD). Current BVAD technology is either too bulky or necessitates having to implant two pumps working independently. The latter requires two different controllers for each pump leading to the potential complication of uneven flow dynamics and the requirements for a large amount of body space. This paper illustrates the combination of the LVAD and RVAD as one complete device to augment the function of both the left and right cardiac chambers with double impellers. The proposed device has two impellers rotating in counter directions, hence eliminating the necessity of the body muscles and tubing/heart connection to restrain the pump. The device will also have two separate chambers with independent rotating impeller for the left and right chambers. A problem with centrifugal impellers is the fluid stagnation underneath the impeller. This leads to thrombosis and blood clots.This paper presents the design, construction and location of washout hole to prevent thrombus for a Bi-VAD centrifugal pump. Results using CFD will be used to illustrate the superiority of our design concept in terms of preventing thrombus formation and hemolysis.
Resumo:
Objective--To determine whether heart failure with preserved systolic function (HFPSF) has different natural history from left ventricular systolic dysfunction (LVSD). Design and setting--A retrospective analysis of 10 years of data (for patients admitted between 1 July 1994 and 30 June 2004, and with a study census date of 30 June 2005) routinely collected as part of clinical practice in a large tertiary referral hospital.Main outcome measures-- Sociodemographic characteristics, diagnostic features, comorbid conditions, pharmacotherapies, readmission rates and survival.Results--Of the 2961 patients admitted with chronic heart failure, 753 had echocardiograms available for this analysis. Of these, 189 (25%) had normal left ventricular size and systolic function. In comparison to patients with LVSD, those with HFPSF were more often female (62.4% v 38.5%; P = 0.001), had less social support, and were more likely to live in nursing homes (17.9% v 7.6%; P < 0.001), and had a greater prevalence of renal impairment (86.7% v 6.2%; P = 0.004), anaemia (34.3% v 6.3%; P = 0.013) and atrial fibrillation (51.3% v 47.1%; P = 0.008), but significantly less ischaemic heart disease (53.4% v 81.2%; P = 0.001). Patients with HFPSF were less likely to be prescribed an angiotensin-converting enzyme inhibitor (61.9% v 72.5%; P = 0.008); carvedilol was used more frequently in LVSD (1.5% v 8.8%; P < 0.001). Readmission rates were higher in the HFPSF group (median, 2 v 1.5 admissions; P = 0.032), particularly for malignancy (4.2% v 1.8%; P < 0.001) and anaemia (3.9% v 2.3%; P < 0.001). Both groups had the same poor survival rate (P = 0.912). Conclusions--Patients with HFPSF were predominantly older women with less social support and higher readmission rates for associated comorbid illnesses. We therefore propose that reduced survival in HFPSF may relate more to comorbid conditions than suboptimal cardiac management.
Resumo:
A description of a computer program to analyse cine angiograms of the heart and pressure waveforms to calculate valve gradients.
Resumo:
ROLE OF LOW AFFINITY β1-ADRENERGIC RECEPTOR IN NORMAL AND DISEASED HEARTS Background: The β1-adrenergic receptor (AR) has at least two binding sites, 1HAR and 1LAR (high and low affinity site of the 1AR respectively) which cause cardiostimulation. Some β-blockers, for example (-)-pindolol and (-)-CGP 12177 can activate β1LAR at higher concentrations than those required to block β1HAR. While β1HAR can be blocked by all clinically used β-blockers, β1LAR is relatively resistant to blockade. Thus, chronic β1LAR activation may occur in the setting of β-blocker therapy, thereby mediating persistent βAR signaling. Thus, it is important to determine the potential significance of β1LAR in vivo, particularly in disease settings. Method and result: C57Bl/6 male mice were used. Chronic (4 weeks) β1LAR activation was achieved by treatment with (-)-CGP12177 via osmotic minipump. Cardiac function was assessed by echocardiography and catheterization. (-)-CGP12177 treatment in healthy mice increased heart rate and left ventricular (LV) contractility without detectable LV remodelling or hypertrophy. In mice subjected to an 8-week period of aorta banding, (-)-CGP12177 treatment given during 4-8 weeks led to a positive inotropic effect. (-)-CGP12177 treatment exacerbated LV remodelling indicated by a worsening of LV hypertrophy by ??% (estimated by weight, wall thickness, cardiomyocyte size) and interstitial/perivascular fibrosis (by histology). Importantly, (-)-CGP12177 treatment to aorta banded mice exacerbated cardiac expression of hypertrophic, fibrogenic and inflammatory genes (all p<0.05 vs. non-treated control with aorta banding).. Conclusion: β1LAR activation provides functional support to the heart, in both normal and diseased (pressure overload) settings. Sustained β1LAR activation in the diseased heart exacerbates LV remodelling and therefore may promote disease progression from compensatory hypertrophy to heart failure. Word count: 270
Resumo:
Right heart dysfunction is one of the most serious complications following implantation of a left ventricular assist device (LVAD), often leading to the requirement for short or long term right ventricular support (RVAD). The inflow cannulation site induces major haemodynamic changes and so there is a need to optimize the site used depending on the patient's condition. Therefore, this study evaluated and compared the haemodynamic influence of right atrial (RAC) and right ventricular (RVC) inflow cannulation sites. An in-vitro, variable heart failure, mock circulation loop was used to compare RAC and RVC in mild and severe biventricular heart failure (BHF) conditions. In the severe BHF condition, higher ventricular ejection fraction (RAC: 13.6%, RVC: 32.7%) and thus improved heart chamber and RVAD washout was observed with RVC, which suggested this strategy might be preferable for long term support (ie. bridge to transplant or destination therapy) to reduce the risk of thrombus formation. In the mild BHF condition, higher pulmonary valve flow (RAC: 3.33 L/min, RVC: 1.97 L/min) and lower right ventricular stroke work (RAC: 0.10 W, RVC: 0.13 W) and volumes were recorded with RAC. These results indicate an improved potential for myocardial recovery, thus RAC should be chosen in this condition. This in-vitro study suggests that RVAD inflow cannulation site should be chosen on a patient-specific basis with a view to the support strategy to promote myocardial recovery or reduce the risk of long-term complications.
Resumo:
Background and Purpose The β1-adrenoceptor has at least two binding sites, high and low affinity sites (β1H and β1L, respectively), which mediate cardiostimulation. While β1H-adrenoceptor can be blocked by all clinically used β-blockers, β1L-adrenoceptor is relatively resistant to blockade. Thus, chronic β1L-adrenoceptor activation may mediate persistent cardiostimulation, despite the concurrent blockade of β1H-adrenoceptors. Hence, it is important to determine the potential significance of β1L-adrenoceptors in vivo, particularly in pathological situations. Experimental Approach C57Bl/6 male mice were used. Chronic (4 or 8 weeks) β1L-adrenoceptor activation was achieved by treatment, via osmotic mini pumps, with (-)-CGP12177 (10 mg·kg−1·day−1). Cardiac function was assessed by echocardiography and micromanometry. Key Results (-)-CGP12177 treatment of healthy mice increased heart rate and left ventricular (LV) contractility. (-)-CGP12177 treatment of mice subjected to transverse aorta constriction (TAC), during weeks 4–8 or 4–12 after TAC, led to a positive inotropic effect and exacerbated fibrogenic signalling while cardiac hypertrophy tended to be more severe. (-)-CGP12177 treatment of mice with TAC also exacerbated the myocardial expression of hypertrophic, fibrogenic and inflammatory genes compared to untreated TAC mice. Washout of (-)-CGP12177 revealed a more pronounced cardiac dysfunction after 12 weeks of TAC. Conclusions and Implications β1L-adrenoceptor activation provides functional support to the heart, in both normal and pathological (pressure overload) situations. Sustained β1L-adrenoceptor activation in the diseased heart exacerbates LV remodelling and therefore may promote disease progression from compensatory hypertrophy to heart failure.
Resumo:
Neuropsychological tests requiring patients to find a path through a maze can be used to assess visuospatial memory performance in temporal lobe pathology, particularly in the hippocampus. Alternatively, they have been used as a task sensitive to executive function in patients with frontal lobe damage. We measured performance on the Austin Maze in patients with unilateral left and right temporal lobe epilepsy (TLE), with and without hippocampal sclerosis, compared to healthy controls. Performance was correlated with a number of other neuropsychological tests to identify the cognitive components that may be associated with poor Austin Maze performance. Patients with right TLE were significantly impaired on the Austin Maze task relative to patients with left TLE and controls, and error scores correlated with their performance on the Block Design task. The performance of patients with left TLE was also impaired relative to controls; however, errors correlated with performance on tests of executive function and delayed recall. The presence of hippocampal sclerosis did not have an impact on maze performance. A discriminant function analysis indicated that the Austin Maze alone correctly classified 73.5% of patients as having right TLE. In summary, impaired performance on the Austin Maze task is more suggestive of right than left TLE; however, impaired performance on this visuospatial task does not necessarily involve the hippocampus. The relationship of the Austin Maze task with other neuropsychological tests suggests that differential cognitive components may underlie performance decrements in right versus left TLE.