221 resultados para Vehicle Telematics
em Queensland University of Technology - ePrints Archive
Dynamic analysis of on-board mass data to determine tampering in heavy vehicle on-board mass systems
Resumo:
Transport Certification Australia Limited, jointly with the National Transport Commission, has undertaken a project to investigate the feasibility of on-board mass monitoring (OBM) devices for regulatory purposes. OBM increases jurisdictional confidence in operational heavy vehicle compliance. This paper covers technical issues regarding potential use of dynamic data from OBM systems to indicate that tampering has occurred. Tamper-evidence and accuracy of current OBM systems needed to be determined before any regulatory schemes were put in place for its use. Tests performed to determine potential for, and ease of, tampering. An algorithm was developed to detect tamper events. Its results are detailed.
Resumo:
Transport regulators consider that, with respect to pavement damage, heavy vehicles (HVs) are the riskiest vehicles on the road network. That HV suspension design contributes to road and bridge damage has been recognised for some decades. This thesis deals with some aspects of HV suspension characteristics, particularly (but not exclusively) air suspensions. This is in the areas of developing low-cost in-service heavy vehicle (HV) suspension testing, the effects of larger-than-industry-standard longitudinal air lines and the characteristics of on-board mass (OBM) systems for HVs. All these areas, whilst seemingly disparate, seek to inform the management of HVs, reduce of their impact on the network asset and/or provide a measurement mechanism for worn HV suspensions. A number of project management groups at the State and National level in Australia have been, and will be, presented with the results of the project that resulted in this thesis. This should serve to inform their activities applicable to this research. A number of HVs were tested for various characteristics. These tests were used to form a number of conclusions about HV suspension behaviours. Wheel forces from road test data were analysed. A “novel roughness” measure was developed and applied to the road test data to determine dynamic load sharing, amongst other research outcomes. Further, it was proposed that this approach could inform future development of pavement models incorporating roughness and peak wheel forces. Left/right variations in wheel forces and wheel force variations for different speeds were also presented. This led on to some conclusions regarding suspension and wheel force frequencies, their transmission to the pavement and repetitive wheel loads in the spatial domain. An improved method of determining dynamic load sharing was developed and presented. It used the correlation coefficient between two elements of a HV to determine dynamic load sharing. This was validated against a mature dynamic loadsharing metric, the dynamic load sharing coefficient (de Pont, 1997). This was the first time that the technique of measuring correlation between elements on a HV has been used for a test case vs. a control case for two different sized air lines. That dynamic load sharing was improved at the air springs was shown for the test case of the large longitudinal air lines. The statistically significant improvement in dynamic load sharing at the air springs from larger longitudinal air lines varied from approximately 30 percent to 80 percent. Dynamic load sharing at the wheels was improved only for low air line flow events for the test case of larger longitudinal air lines. Statistically significant improvements to some suspension metrics across the range of test speeds and “novel roughness” values were evident from the use of larger longitudinal air lines, but these were not uniform. Of note were improvements to suspension metrics involving peak dynamic forces ranging from below the error margin to approximately 24 percent. Abstract models of HV suspensions were developed from the results of some of the tests. Those models were used to propose further development of, and future directions of research into, further gains in HV dynamic load sharing. This was from alterations to currently available damping characteristics combined with implementation of large longitudinal air lines. In-service testing of HV suspensions was found to be possible within a documented range from below the error margin to an error of approximately 16 percent. These results were in comparison with either the manufacturer’s certified data or test results replicating the Australian standard for “road-friendly” HV suspensions, Vehicle Standards Bulletin 11. OBM accuracy testing and development of tamper evidence from OBM data were detailed for over 2000 individual data points across twelve test and control OBM systems from eight suppliers installed on eleven HVs. The results indicated that 95 percent of contemporary OBM systems available in Australia are accurate to +/- 500 kg. The total variation in OBM linearity, after three outliers in the data were removed, was 0.5 percent. A tamper indicator and other OBM metrics that could be used by jurisdictions to determine tamper events were developed and documented. That OBM systems could be used as one vector for in-service testing of HV suspensions was one of a number of synergies between the seemingly disparate streams of this project.
Resumo:
On-board mass (OBM) monitoring devices on heavy vehicles (HVs) have been tested in a national programme jointly by Transport Certification Australia Limited and the National Transport Commission. The tests were for, amongst other parameters, accuracy and tamper-evidence. The latter by deliberately tampering with the signals from OBM primary transducers during the tests. The OBM feasibility team is analysing dynamic data recorded at the primary transducers of OBM systems to determine if it can be used to detect tamper events. Tamper-evidence of current OBM systems needs to be determined if jurisdictions are to have confidence in specifying OBM for HVs as part of regulatory schemes. An algorithm has been developed to detect tamper events. The results of its application are detailed here.
Resumo:
Assessment and prediction of the impact of vehicular traffic emissions on air quality and exposure levels requires knowledge of vehicle emission factors. The aim of this study was quantification of emission factors from an on road, over twelve months measurement program conducted at two sites in Brisbane: 1) freeway type (free flowing traffic at about 100 km/h, fleet dominated by small passenger cars - Tora St); and 2) urban busy road with stop/start traffic mode, fleet comprising a significant fraction of heavy duty vehicles - Ipswich Rd. A physical model linking concentrations measured at the road for specific meteorological conditions with motor vehicle emission factors was applied for data analyses. The focus of the study was on submicrometer particles; however the measurements also included supermicrometer particles, PM2.5, carbon monoxide, sulfur dioxide, oxides of nitrogen. The results of the study are summarised in this paper. In particular, the emission factors for submicrometer particles were 6.08 x 1013 and 5.15 x 1013 particles per vehicle-1 km-1 for Tora St and Ipswich Rd respectively and for supermicrometer particles for Tora St, 1.48 x 109 particles per vehicle-1 km-1. Emission factors of diesel vehicles at both sites were about an order of magnitude higher than emissions from gasoline powered vehicles. For submicrometer particles and gasoline vehicles the emission factors were 6.08 x 1013 and 4.34 x 1013 particles per vehicle-1 km-1 for Tora St and Ipswich Rd, respectively, and for diesel vehicles were 5.35 x 1014 and 2.03 x 1014 particles per vehicle-1 km-1 for Tora St and Ipswich Rd, respectively. For supermicrometer particles at Tora St the emission factors were 2.59 x 109 and 1.53 x 1012 particles per vehicle-1 km-1, for gasoline and diesel vehicles, respectively.
Resumo:
This study contributes to the growth of design knowledge in China, where vehicle design for the local, older user is in its initial developmental stages. Therefore, this research has explored the travel needs of older Chinese vehicle users in order to assist designers to better understand users’ current and future needs. A triangulation method consisting of interviews, logbook and co-discovery was used to collect multiple forms of data and so explore the research question. Grounded theory has been employed to analyze the research data. This study found that users’ needs are reflected through various ‘meanings’ that they attach to vehicles – meanings that give a tangible expression to their experiences. This study identified six older-user need categories: (i) safety, (ii) utility, (iii) comfort, (iv) identity, (v) emotion and (vi) spirituality. The interrelationships among these six categories are seen as an interactive structure, rather than as a linear or hierarchical arrangement. Chinese cultural values, which are generated from particular local context and users’ social practice, will play a dynamic role in linking and shaping the travel needs of older vehicle users in the future. Moreover, this study structures the older-user needs model into three levels of meaning, to give guidance to vehicle design direction: (i) the practical meaning level, (ii) the social meaning level and (ii) the cultural meaning level. This study suggests that a more comprehensive explanation exists if designers can identify the vehicle’s meaning and property associated with the fulfilled older users’ needs. However, these needs will vary, and must be related to particular technological, social, and cultural contexts. The significance of this study lies in its contributions to the body of knowledge in three areas: research methodology, theory and design. These theoretical contributions provide a series of methodological tools, models and approaches from a vehicle design perspective. These include a conditional/consequential matrix, a travel needs identification model, an older users’ travel-related needs framework, a user information structure model, and an Older-User-Need-Based vehicle design approach. These models suggest a basic framework for the new design process which might assist in the design of new vehicles to fulfil the needs of future, aging Chinese generations. The models have the potential to be transferred to other design domains and different cultural contexts.
Resumo:
Motor vehicles are major emitters of gaseous and particulate pollution in urban areas, and exposure to particulate pollution can have serious health effects, ranging from respiratory and cardiovascular disease to mortality. Motor vehicle tailpipe particle emissions span a broad size range from 0.003-10µm, and are measured as different subsets of particle mass concentrations or particle number count. However, no comprehensive inventories currently exist in the international published literature covering this wide size range. This paper presents the first published comprehensive inventory of motor vehicle tailpipe particle emissions covering the full size range of particles emitted. The inventory was developed for urban South-East Queensland by combining two techniques from distinctly different disciplines, from aerosol science and transport modelling. A comprehensive set of particle emission factors were combined with traffic modelling, and tailpipe particle emissions were quantified for particle number (ultrafine particles), PM1, PM2.5 and PM10 for light and heavy duty vehicles and buses. A second aim of the paper involved using the data derived in this inventory for scenario analyses, to model the particle emission implications of different proportions of passengers travelling in light duty vehicles and buses in the study region, and to derive an estimate of fleet particle emissions in 2026. It was found that heavy duty vehicles (HDVs) in the study region were major emitters of particulate matter pollution, and although they contributed only around 6% of total regional vehicle kilometres travelled, they contributed more than 50% of the region’s particle number (ultrafine particles) and PM1 emissions. With the freight task in the region predicted to double over the next 20 years, this suggests that HDVs need to be a major focus of mitigation efforts. HDVs dominated particle number (ultrafine particles) and PM1 emissions; and LDV PM2.5 and PM10 emissions. Buses contributed approximately 1-2% of regional particle emissions.
Resumo:
The over represented number of novice drivers involved in crashes is alarming. Driver training is one of the interventions aimed at mitigating the number of crashes that involve young drivers. To our knowledge, Advanced Driver Assistance Systems (ADAS) have never been comprehensively used in designing an intelligent driver training system. Currently, there is a need to develop and evaluate ADAS that could assess driving competencies. The aim is to develop an unsupervised system called Intelligent Driver Training System (IDTS) that analyzes crash risks in a given driving situation. In order to design a comprehensive IDTS, data is collected from the Driver, Vehicle and Environment (DVE), synchronized and analyzed. The first implementation phase of this intelligent driver training system deals with synchronizing multiple variables acquired from DVE. RTMaps is used to collect and synchronize data like GPS, vehicle dynamics and driver head movement. After the data synchronization, maneuvers are segmented out as right turn, left turn and overtake. Each maneuver is composed of several individual tasks that are necessary to be performed in a sequential manner. This paper focuses on turn maneuvers. Some of the tasks required in the analysis of ‘turn’ maneuver are: detect the start and end of the turn, detect the indicator status change, check if the indicator was turned on within a safe distance and check the lane keeping during the turn maneuver. This paper proposes a fusion and analysis of heterogeneous data, mainly involved in driving, to determine the risk factor of particular maneuvers within the drive. It also explains the segmentation and risk analysis of the turn maneuver in a drive.
Resumo:
Objective: To define characteristics of vehicle crashes occurring on rural private property in north Queensland with an exploration of associated risk factors. Design: Descriptive analysis of private property crash data collected by the Rural and Remote Road Safety Study. Setting: Rural and remote north Queensland. Participants: A total of 305 vehicle controllers aged 16 years or over hospitalised at Atherton, Cairns, Mount Isa or Townsville for at least 24 hours as a result of a vehicle crash. Main outcome measure: A structured questionnaire completed by participants covering crash details, lifestyle and demographic characteristics, driving history, medical history, alcohol and drug use and attitudes to road use. Results: Overall, 27.9% of interviewees crashed on private property, with the highest proportion of private road crashes occurring in the North West Statistical Division (45%). Risk factors shown to be associated with private property crashes included male sex, riding off-road motorcycle or all-terrain vehicle, first-time driving at that site, lack of licence for vehicle type, recreational use and not wearing a helmet or seatbelt. Conclusions: Considerable trauma results from vehicle crashes on rural private property. These crashes are not included in most crash data sets, which are limited to public road crashes. Legislation and regulations applicable to private property vehicle use are largely focused on workplace health and safety, yet work-related crashes represent a minority of private property crashes in north Queensland.
Resumo:
A low-cost test bed was made from a modified heavy vehicle (HV) brake tester. By rotating a test HV’s wheel on an eccentric roller, a known vibration was imparted to the wheel under test. A control case for dampers in good condition was compared with two test cases of ineffective shock absorbers. Measurement of the forces at the bearings of the roller provided an indication of the HV wheel-forces. Where the level of serviceability of the shock absorbers varied, differences in wheel load provided a quality indicator corresponding to a change of damper characteristic. Conclusions regarding the levels of damper maintenance beyond which HV suspensions cause road damage and dynamic wheel forces at the threshold of tyre wear at which HV shock absorbers are normally replaced are presented.