191 resultados para User-Computer Interface
em Queensland University of Technology - ePrints Archive
Resumo:
This paper reports on the implementation of a non-invasive electroencephalography-based brain-computer interface to control functions of a car in a driving simulator. The system is comprised of a Cleveland Medical Devices BioRadio 150 physiological signal recorder, a MATLAB-based BCI and an OKTAL SCANeR advanced driving experience simulator. The system utilizes steady-state visual-evoked potentials for the BCI paradigm, elicited by frequency-modulated high-power LEDs and recorded with the electrode placement of Oz-Fz with Fz as ground. A three-class online brain-computer interface was developed and interfaced with an advanced driving simulator to control functions of the car, including acceleration and steering. The findings are mainly exploratory but provide an indication of the feasibility and challenges of brain-controlled on-road cars for the future, in addition to a safe, simulated BCI driving environment to use as a foundation for research into overcoming these challenges.
Resumo:
Emergency Response Teams increasingly use interactive technology to help manage information and communications. The challenge is to maintain a high situation awareness for different interactive devices sizes. This research specifically compared a handheld interactive device in the form of an iPad with a large interactive multi-touch tabletop. A search and rescue inspired simulator was designed to test operator situation awareness for the two sized devices. The results show that operators had better situation awareness on the tabletop device when the operation related to detecting of moving targets, searching target locations, distinguishing target types, and comprehending displayed information.
Resumo:
Motivation: Unravelling the genetic architecture of complex traits requires large amounts of data, sophisticated models and large computational resources. The lack of user-friendly software incorporating all these requisites is delaying progress in the analysis of complex traits. Methods: Linkage disequilibrium and linkage analysis (LDLA) is a high-resolution gene mapping approach based on sophisticated mixed linear models, applicable to any population structure. LDLA can use population history information in addition to pedigree and molecular markers to decompose traits into genetic components. Analyses are distributed in parallel over a large public grid of computers in the UK. Results: We have proven the performance of LDLA with analyses of simulated data. There are real gains in statistical power to detect quantitative trait loci when using historical information compared with traditional linkage analysis. Moreover, the use of a grid of computers significantly increases computational speed, hence allowing analyses that would have been prohibitive on a single computer. © The Author 2009. Published by Oxford University Press. All rights reserved.
Resumo:
Web-based social networking applications have become increasingly important in recent years. The current applications in the healthcare sphere can support the health management, but to date there is no patient-controlled integrator. This paper proposes a platform called Multiple Profile Manager (MPM) that enables a user to create and manage an integrated profile that can be shared across numerous social network sites. Moreover, it is able to facilitate the collection of personal healthcare data, which makes a contribution to the development of public health informatics. Here we want to illustrate how patients and physicians can be benefited from enabling the platform for online social network sites. The MPM simplifies the management of patients' profiles and allows health professionals to obtain a more complete picture of the patients' background so that they can provide better health care. To do so, we demonstrate a prototype of the platform and describe its protocol specification, which is an XMPP (Extensible Messaging and Presence Protocol) [1] extension, for sharing and synchronising profile data (vCard²) between different social networks.
Resumo:
BACKGROUND: The intense pain and anxiety triggered by burns and their associated wound care procedures are well established in the literature. Non-pharmacological intervention is a critical component of total pain management protocols and is used as an adjunct to pharmacological analgesia. An example is virtual reality, which has been used effectively to dampen pain intensity and unpleasantness. Possible links or causal relationships between pain/anxiety/stress and burn wound healing have previously not been investigated. The purpose of this study is to investigate these relationships, specifically by determining if a newly developed multi-modal procedural preparation and distraction device (Ditto) used during acute burn wound care procedures will reduce the pain and anxiety of a child and increase the rate of re-epithelialization. METHODS/DESIGN: Children (4 to 12 years) with acute burn injuries presenting for their first dressing change will be randomly assigned to either the (1) Control group (standard distraction) or (2) Ditto intervention group (receiving Ditto, procedural preparation and Ditto distraction). It is intended that a minimum of 29 participants will be recruited for each treatment group. Repeated measures of pain intensity, anxiety, stress and healing will be taken at every dressing change until complete wound re-epithelialization. Further data collection will aid in determining patient satisfaction and cost effectiveness of the Ditto intervention, as well as its effect on speed of wound re-epithelialization. DISCUSSION: Results of this study will provide data on whether the disease process can be altered by reducing stress, pain and anxiety in the context of acute burn wounds. TRIAL REGISTRATION: ACTRN12611000913976.
Resumo:
Gesture in performance is widely acknowledged in the literature as an important element in making a performance expressive and meaningful. The body has been shown to play an important role in the production and perception of vocal performance in particular. This paper is interested in the role of gesture in creative works that seek to extend vocal performance via technology. A creative work for vocal performer, laptop computer and a Human Computer Interface called the eMic (Extended Microphone Stand Interface controller) is presented as a case study, to explore the relationships between movement, voice production, and musical expression. The eMic is an interface for live vocal performance that allows the singers’ gestures and interactions with a sensor based microphone stand to be captured and mapped to musical parameters. The creative work discussed in this paper presents a new compositional approach for the eMic by working with movement as a starting point for the composition and thus using choreographed gesture as the basis for musical structures. By foregrounding the body and movement in the creative process, the aim is to create a more visually engaging performance where the performer is able to more effectively use the body to express their musical objectives.
Resumo:
In an age where digital innovation knows no boundaries, research in the area of brain-computer interface and other neural interface devices go where none have gone before. The possibilities are endless and as dreams become reality, the implications of these amazing developments should be considered. Some of these new devices have been created to correct or minimise the effects of disease or injury so the paper discusses some of the current research and development in the area, including neuroprosthetics. To assist researchers and academics in identifying some of the legal and ethical issues that might arise as a result of research and development of neural interface devices, using both non-invasive techniques and invasive procedures, the paper discusses a number of recent observations of authors in the field. The issue of enhancing human attributes by incorporating these new devices is also considered. Such enhancement may be regarded as freeing the mind from the constraints of the body, but there are legal and moral issues that researchers and academics would be well advised to contemplate as these new devices are developed and used. While different fact situation surround each of these new devices, and those that are yet to come, consideration of the legal and ethical landscape may assist researchers and academics in dealing effectively with matters that arise in these times of transition. Lawyers could seek to facilitate the resolution of the legal disputes that arise in this area of research and development within the existing judicial and legislative frameworks. Whether these frameworks will suffice, or will need to change in order to enable effective resolution, is a broader question to be explored.
Resumo:
Glass Pond is an interactive artwork designed to engender exploration and reflection through an intuitive, tangible interface and a simulation agent. It is being developed using iterative methods. A study has been conducted with the aim of illuminating user experience, interface, design, and performance issues.The paper describes the study methodology and process of data analysis including coding schemes for cognitive states and movements. Analysis reveals that exploration and reflection occurred as well as composing behaviours (unexpected). Results also show that participants interacted to varying degrees. Design discussion includes the artwork's (novel) interface and configuration.
Resumo:
Phenomenography is a research approach devised to allow the investigation of varying ways in which people experience aspects of their world. Whilst growing attention is being paid to interpretative research in LIS, it is not always clear how the outcomes of such research can be used in practice. This article explores the potential contribution of phenomenography in advancing the application of phenomenological and hermeneutic frameworks to LIS theory, research and practice. In phenomenography we find a research toll which in revealing variation, uncovers everyday understandings of phenomena and provides outcomes which are readily applicable to professional practice. THe outcomes may be used in human computer interface design, enhancement, implementation and training, in the design and evaluation of services, and in education and training for both end users and information professionals. A proposed research territory for phenomenography in LIS includes investigating qualitative variation in the experienced meaning of: 1) information and its role in society 2) LIS concepts and principles 3) LIS processes and; 4) LIS elements.
Resumo:
We blend research from human-computer interface (HCI) design with computational based crypto- graphic provable security. We explore the notion of practice-oriented provable security (POPS), moving the focus to a higher level of abstraction (POPS+) for use in providing provable security for security ceremonies involving humans. In doing so we high- light some challenges and paradigm shifts required to achieve meaningful provable security for a protocol which includes a human. We move the focus of security ceremonies from being protocols in their context of use, to the protocols being cryptographic building blocks in a higher level protocol (the security cere- mony), which POPS can be applied to. In order to illustrate the need for our approach, we analyse both a protocol proven secure in theory, and a similar proto- col implemented by a �nancial institution, from both HCI and cryptographic perspectives.
Resumo:
Companies such as NeuroSky and Emotiv Systems are selling non-medical EEG devices for human computer interaction. These devices are significantly more affordable than their medical counterparts, and are mainly used to measure levels of engagement, focus, relaxation and stress. This information is sought after for marketing research and games. However, these EEG devices have the potential to enable users to interact with their surrounding environment using thoughts only, without activating any muscles. In this paper, we present preliminary results that demonstrate that despite reduced voltage and time sensitivity compared to medical-grade EEG systems, the quality of the signals of the Emotiv EPOC neuroheadset is sufficiently good in allowing discrimina tion between imaging events. We collected streams of EEG raw data and trained different types of classifiers to discriminate between three states (rest and two imaging events). We achieved a generalisation error of less than 2% for two types of non-linear classifiers.
Resumo:
Properly designed decision support environments encourage proactive and objective decision making. The work presented in this paper inquires into developing a decision support environment and a tool to facilitate objective decision making in dealing with road traffic noise. The decision support methodology incorporates traffic amelioration strategies both within and outside the road reserve. The project is funded by the CRC for Construction Innovation and conducted jointly by the RMIT University and the Queensland Department of Main Roads (MR) in collaboration with the Queensland Department of Public Works, Arup Pty Ltd., and the Queensland University of Technology. In this paper, the proposed decision support framework is presented in the way of a flowchart which enabled the development of the decision support tool (DST). The underpinning concept is to establish and retain an information warehouse for each critical road segment (noise corridor) for a given planning horizon. It is understood that, in current practice, some components of the approach described are already in place but not fully integrated and supported. It provides an integrated user-friendly interface between traffic noise modeling software, noise management criteria and cost databases.
Resumo:
The road and transport industry in Australia and overseas has come a long way to understanding the impact of road traffic noise on the urban environment. Most road authorities now have guidelines to help assess and manage the impact of road traffic noise on noise-sensitive areas and development. While several economic studies across Australia and overseas have tried to value the impact of noise on property prices, decision-makers investing in road traffic noise management strategies have relatively limited historic data and case studies to go on. The perceived success of a noise management strategy currently relies largely on community expectations at a given time, and is not necessarily based on the analysis of the costs and benefits, or the long-term viability and value to the community of the proposed treatment options. With changing trends in urban design, it is essential that the 'whole-of-life' costs and benefits of noise ameliorative treatment options and strategies be identified and made available for decisionmakers in future investment considerations. For this reason, CRC for Construction Innovation Australia funded a research project, Noise Management in Urban Environments to help decision-makers with future road traffic noise management investment decisions. RMIT University and the Queensland Department of Main Roads (QDMR) have conducted the research work, in collaboration with the Queensland Department of Public Works, ARUP Pty Ltd, and the Queensland University of Technology. The research has formed the basis for the development of a decision-support software tool, and helped collate technical and costing data for known noise amelioration treatment options. We intend that the decision support software tool (DST) should help an investment decision-maker to be better informed of suitable noise ameliorative treatment options on a project-by-project basis and identify likely costs and benefits associated with each of those options. This handbook has been prepared as a procedural guide for conducting a comparative assessment of noise ameliorative options. The handbook outlines the methodology and assumptions adopted in the decision-support framework for the investment decision-maker and user of the DST. The DST has been developed to provide an integrated user-friendly interface between road traffic noise modelling software, the relevant assessment criteria and the options analysis process. A user guide for the DST is incorporated in this handbook.
Resumo:
With regard to the long-standing problem of the semantic gap between low-level image features and high-level human knowledge, the image retrieval community has recently shifted its emphasis from low-level features analysis to high-level image semantics extrac- tion. User studies reveal that users tend to seek information using high-level semantics. Therefore, image semantics extraction is of great importance to content-based image retrieval because it allows the users to freely express what images they want. Semantic content annotation is the basis for semantic content retrieval. The aim of image anno- tation is to automatically obtain keywords that can be used to represent the content of images. The major research challenges in image semantic annotation are: what is the basic unit of semantic representation? how can the semantic unit be linked to high-level image knowledge? how can the contextual information be stored and utilized for image annotation? In this thesis, the Semantic Web technology (i.e. ontology) is introduced to the image semantic annotation problem. Semantic Web, the next generation web, aims at mak- ing the content of whatever type of media not only understandable to humans but also to machines. Due to the large amounts of multimedia data prevalent on the Web, re- searchers and industries are beginning to pay more attention to the Multimedia Semantic Web. The Semantic Web technology provides a new opportunity for multimedia-based applications, but the research in this area is still in its infancy. Whether ontology can be used to improve image annotation and how to best use ontology in semantic repre- sentation and extraction is still a worth-while investigation. This thesis deals with the problem of image semantic annotation using ontology and machine learning techniques in four phases as below. 1) Salient object extraction. A salient object servers as the basic unit in image semantic extraction as it captures the common visual property of the objects. Image segmen- tation is often used as the �rst step for detecting salient objects, but most segmenta- tion algorithms often fail to generate meaningful regions due to over-segmentation and under-segmentation. We develop a new salient object detection algorithm by combining multiple homogeneity criteria in a region merging framework. 2) Ontology construction. Since real-world objects tend to exist in a context within their environment, contextual information has been increasingly used for improving object recognition. In the ontology construction phase, visual-contextual ontologies are built from a large set of fully segmented and annotated images. The ontologies are composed of several types of concepts (i.e. mid-level and high-level concepts), and domain contextual knowledge. The visual-contextual ontologies stand as a user-friendly interface between low-level features and high-level concepts. 3) Image objects annotation. In this phase, each object is labelled with a mid-level concept in ontologies. First, a set of candidate labels are obtained by training Support Vectors Machines with features extracted from salient objects. After that, contextual knowledge contained in ontologies is used to obtain the �nal labels by removing the ambiguity concepts. 4) Scene semantic annotation. The scene semantic extraction phase is to get the scene type by using both mid-level concepts and domain contextual knowledge in ontologies. Domain contextual knowledge is used to create scene con�guration that describes which objects co-exist with which scene type more frequently. The scene con�guration is represented in a probabilistic graph model, and probabilistic inference is employed to calculate the scene type given an annotated image. To evaluate the proposed methods, a series of experiments have been conducted in a large set of fully annotated outdoor scene images. These include a subset of the Corel database, a subset of the LabelMe dataset, the evaluation dataset of localized semantics in images, the spatial context evaluation dataset, and the segmented and annotated IAPR TC-12 benchmark.
Resumo:
The use of visual features in the form of lip movements to improve the performance of acoustic speech recognition has been shown to work well, particularly in noisy acoustic conditions. However, whether this technique can outperform speech recognition incorporating well-known acoustic enhancement techniques, such as spectral subtraction, or multi-channel beamforming is not known. This is an important question to be answered especially in an automotive environment, for the design of an efficient human-vehicle computer interface. We perform a variety of speech recognition experiments on a challenging automotive speech dataset and results show that synchronous HMM-based audio-visual fusion can outperform traditional single as well as multi-channel acoustic speech enhancement techniques. We also show that further improvement in recognition performance can be obtained by fusing speech-enhanced audio with the visual modality, demonstrating the complementary nature of the two robust speech recognition approaches.