122 resultados para Urinary catheters
em Queensland University of Technology - ePrints Archive
Resumo:
Background Through clinical observation nursing staff of an inpatient rehabilitation unit identified a link between incontinence and undiagnosed urinary tract infections (UTIs). Further, clinical observation and structured continence management led to the realisation that urinary incontinence often improved, or resolved completely, after treatment with antibiotics. In 2009 a small study found that 30% of admitted rehabilitation patients had an undiagnosed UTI, with the majority admitted post-orthopaedic fracture. We suspected that the frequent use of indwelling urinary catheters (IDCs) in the orthopaedic environment may have been a contributing factor. Therefore, a second, more thorough, study was commenced in 2010 and completed in 2011. Aim The aim of this study was to identify what proportion of patients were admitted to one rehabilitation unit with an undiagnosed UTI over a 12-month period. We wanted to identify and highlight the presence of known risk factors associated with UTI and determine whether urinary incontinence was associated with the presence of UTI. Methods Data were collected from every patient that was admitted over a 12-month period (n=140). The majority of patients were over the age of 65 and had an orthopaedic fracture (36.4%) or stroke (27.1%). Mid-stream urine (MSU) samples, routinely collected and sent for culture and sensitivity as part of standard admission procedure, were used by the treating medical officer to detect the presence of UTI. A data collection sheet was developed, reviewed and trialled, before official data collection commenced. Data were collected as part of usual practice and collated by a research assistant. Inferential statistics were used to analyse the data. Results This study found that 25 (17.9%) of the 140 patients admitted to rehabilitation had an undiagnosed UTI, with a statistically significant association between prior presence of an IDC and the diagnosis of UTI. Urinary incontinence improved after the completion of treatment with antibiotics. Results further demonstrated a significant association between the confirmation of a UTI on culture and sensitivity and the absence of symptoms usually associated with UTI, such as burning or stinging on urination. Overall, this study suggests careful monitoring of urinary symptoms in patients admitted to rehabilitation, especially in patients with a prior IDC, is warranted.
Resumo:
Background Centers for Disease Control Guidelines recommend replacement of peripheral intravenous (IV) catheters every 72 to 96 hours. Routine replacement is thought to reduce the risk of phlebitis and bacteraemia. Catheter insertion is an unpleasant experience for patients and replacement may be unnecessary if the catheter remains functional and there are no signs of inflammation. Costs associated with routine replacement may be considerable. Objectives To assess the effects of removing peripheral IV catheters when clinically indicated compared with removing and re-siting the catheter routinely.
Resumo:
Introduction: Some types of antimicrobial-coated central venous catheters (A-CVC) have been shown to be cost-effective in preventing catheter-related bloodstream infection (CR-BSI). However, not all types have been evaluated, and there are concerns over the quality and usefulness of these earlier studies. There is uncertainty amongst clinicians over which, if any, antimicrobial-coated central venous catheters to use. We re-evaluated the cost-effectiveness of all commercially available antimicrobialcoated central venous catheters for prevention of catheter-related bloodstream infection in adult intensive care unit (ICU) patients. Methods: We used a Markov decision model to compare the cost-effectiveness of antimicrobial-coated central venous catheters relative to uncoated catheters. Four catheter types were evaluated; minocycline and rifampicin (MR)-coated catheters; silver, platinum and carbon (SPC)-impregnated catheters; and two chlorhexidine and silver sulfadiazine-coated catheters, one coated on the external surface (CH/SSD (ext)) and the other coated on both surfaces (CH/SSD (int/ext)). The incremental cost per qualityadjusted life-year gained and the expected net monetary benefits were estimated for each. Uncertainty arising from data estimates, data quality and heterogeneity was explored in sensitivity analyses. Results: The baseline analysis, with no consideration of uncertainty, indicated all four types of antimicrobial-coated central venous catheters were cost-saving relative to uncoated catheters. Minocycline and rifampicin-coated catheters prevented 15 infections per 1,000 catheters and generated the greatest health benefits, 1.6 quality-adjusted life-years, and cost-savings, AUD $130,289. After considering uncertainty in the current evidence, the minocycline and rifampicin-coated catheters returned the highest incremental monetary net benefits of $948 per catheter; but there was a 62% probability of error in this conclusion. Although the minocycline and rifampicin-coated catheters had the highest monetary net benefits across multiple scenarios, the decision was always associated with high uncertainty. Conclusions: Current evidence suggests that the cost-effectiveness of using antimicrobial-coated central venous catheters within the ICU is highly uncertain. Policies to prevent catheter-related bloodstream infection amongst ICU patients should consider the cost-effectiveness of competing interventions in the light of this uncertainty. Decision makers would do well to consider the current gaps in knowledge and the complexity of producing good quality evidence in this area.
Resumo:
This naturalistic study investigated the mechanisms of change in measures of negative thinking and in 24-h urinary metabolites of noradrenaline (norepinephrine), dopamine and serotonin in a sample of 43 depressed hospital patients attending an eight-session group cognitive behavior therapy program. Most participants (91%) were taking antidepressant medication throughout the therapy period according to their treating Psychiatrists' prescriptions. The sample was divided into outcome categories (19 Responders and 24 Non-responders) on the basis of a clinically reliable change index [Jacobson, N.S., & Truax, P., 1991. Clinical significance: a statistical approach to defining meaningful change in psychotherapy research. Journal of Consulting and Clinical Psychology, 59, 12–19.] applied to the Beck Depression Inventory scores at the end of the therapy. Results of repeated measures analysis of variance [ANOVA] analyses of variance indicated that all measures of negative thinking improved significantly during therapy, and significantly more so in the Responders as expected. The treatment had a significant impact on urinary adrenaline and metadrenaline excretion however, these changes occurred in both Responders and Non-responders. Acute treatment did not significantly influence the six other monoamine metabolites. In summary, changes in urinary monoamine levels during combined treatment for depression were not associated with self-reported changes in mood symptoms.
Resumo:
Catheter associated urinary tract infections (CAUTI) are a worldwide problem that may lead to increased patient morbidity, cost and mortality.1e3 The literature is divided on whether there are real effects from CAUTI on length of stay or mortality. Platt4 found the costs and mortality risks to be largeyetGraves et al found the opposite.5 A reviewof the published estimates of the extra length of stay showed results between zero and 30 days.6 The differences in estimates may have been caused by the different epidemiological methods applied. Accurately estimating the effects of CAUTI is difficult because it is a time-dependent exposure. This means that standard statistical techniques, such asmatched case-control studies, tend to overestimate the increased hospital stay and mortality risk due to infection. The aim of the study was to estimate excess length of stay andmortality in an intensive care unit (ICU) due to a CAUTI, using a statistical model that accounts for the timing of infection. Data collected from ICU units in lower and middle income countries were used for this analysis.7,8 There has been little research for these settings, hence the need for this paper.
Resumo:
We describe the population pharmacokinetics of an acepromazine (ACP) metabolite (2-(1-hydroxyethyl)promazine) (HEPS) in horses for the estimation of likely detection times in plasma and urine. Acepromazine (30 mg) was administered to 12 horses, and blood and urine samples were taken at frequent intervals for chemical analysis. A Bayesian hierarchical model was fitted to describe concentration-time data and cumulative urine amounts for HEPS. The metabolite HEPS was modelled separately from the parent ACP as the half-life of the parent was considerably less than that of the metabolite. The clearance ($Cl/F_{PM}$) and volume of distribution ($V/F_{PM}$), scaled by the fraction of parent converted to metabolite, were estimated as 769 L/h and 6874 L, respectively. For a typical horse in the study, after receiving 30 mg of ACP, the upper limit of the detection time was 35 hours in plasma and 100 hours in urine, assuming an arbitrary limit of detection of 1 $\mu$g/L, and a small ($\approx 0.01$) probability of detection. The model derived allowed the probability of detection to be estimated at the population level. This analysis was conducted on data collected from only 12 horses, but we assume that this is representative of the wider population.
Resumo:
This paper was designed to study metabonomic characters of the hepatotoxicity induced by alcohol and the intervention effects of Yin Chen Hao Tang (YCHT), a classic traditional Chinese medicine formula for treatment of jaundice and liver disorders in China. Urinary samples from control, alcohol- and YCHT-treated rats were analyzed by ultra-performance liquid chromatography/electrospray ionization quadruple time-of-flight mass spectrometry (UPLC/ESI-QTOF-MS) in positive ionization mode. The total ion chromatograms obtained from the control, alcohol- and YCHT-treated rats were easily distinguishable using a multivariate statistical analysis method such as the principal components analysis (PCA). The greatest difference in metabolic profiling was observed from alcohol-treated rats compared with the control and YCHT-treated rats. The positive ions m/z 664.3126 (9.00 min) was elevated in urine of alcohol-treated rats, whereas, ions m/z 155.3547 (10.96 min) and 708.2932 (9.01 min) were at a lower concentration compared with that in urine of control rats, however, these ions did not indicate a statistical difference between control rats and YCHT-treated rats. The ion m/z 664.3126 was found to correspond to ceramide (d18:1/25:0), providing further support for an involvement of the sphingomyelin signaling pathway in alcohol hepatotoxicity and the intervention effects of YCHT.
Resumo:
Poor health and injury represent major obstacles to the future economic security of Australia. The national economic cost of work-related injury is estimated at $57.5 billion p/a. Since exposure to high physical demands is a major risk factor for musculoskeletal injury, monitoring and managing such physical activity levels in workers is a potentially important injury prevention strategy. Current injury monitoring practices are inadequate for the provision of clinically valuable information about the tissue specific responses to physical exertion. Injury of various soft tissue structures can manifest over time through accumulation of micro-trauma. Such micro-trauma has a propensity to increase the risk of acute injuries to soft-tissue structures such as muscle or tendon. As such, the capacity to monitor biomarkers that result from the disruption of these tissues offers a means of assisting the pre-emptive management of subclinical injury prior to acute failure or for evaluation of recovery processes. Here we have adopted an in-vivo exercise induced muscle damage model allowing the application of laboratory controlled conditions to assist in uncovering biochemical indicators associated with soft-tissue trauma and recovery. Importantly, urine was utilised as the diagnostic medium since it is non-invasive to collect, more acceptable to workers and less costly to employers. Moreover, it is our hypothesis that exercise induced tissue degradation products enter the circulation and are subsequently filtered by the kidney and pass through to the urine. To test this hypothesis a range of metabolomic and proteomic discovery-phase techniques were used, along with targeted approaches. Several small molecules relating to tissue damage were identified along with a series of skeletal muscle-specific protein fragments resulting from exercise induced soft-tissue damage. Each of the potential biomolecular markers appeared to be temporally present within urine. Moreover, the regulation of abundance seemed to be associated with functional recovery following the injury. This discovery may have important clinical applications for monitoring of a variety of inflammatory myopathies as well as novel applications in monitoring of the musculoskeletal health status of workers, professional athletes and/or military personnel to reduce the onset of potentially debilitating musculoskeletal injuries within these professions.
Resumo:
BACKGROUND: US Centers for Disease Control guidelines recommend replacement of peripheral intravenous (IV) catheters no more frequently than every 72 to 96 hours. Routine replacement is thought to reduce the risk of phlebitis and bloodstream infection. Catheter insertion is an unpleasant experience for patients and replacement may be unnecessary if the catheter remains functional and there are no signs of inflammation. Costs associated with routine replacement may be considerable. This is an update of a review first published in 2010. OBJECTIVES: To assess the effects of removing peripheral IV catheters when clinically indicated compared with removing and re-siting the catheter routinely. SEARCH METHODS: For this update the Cochrane Peripheral Vascular Diseases (PVD) Group Trials Search Co-ordinator searched the PVD Specialised Register (December 2012) and CENTRAL (2012, Issue 11). We also searched MEDLINE (last searched October 2012) and clinical trials registries. SELECTION CRITERIA: Randomised controlled trials that compared routine removal of peripheral IV catheters with removal only when clinically indicated in hospitalised or community dwelling patients receiving continuous or intermittent infusions. DATA COLLECTION AND ANALYSIS: Two review authors independently assessed trial quality and extracted data. MAIN RESULTS: Seven trials with a total of 4895 patients were included in the review. Catheter-related bloodstream infection (CRBSI) was assessed in five trials (4806 patients). There was no significant between group difference in the CRBSI rate (clinically-indicated 1/2365; routine change 2/2441). The risk ratio (RR) was 0.61 but the confidence interval (CI) was wide, creating uncertainty around the estimate (95% CI 0.08 to 4.68; P = 0.64). No difference in phlebitis rates was found whether catheters were changed according to clinical indications or routinely (clinically-indicated 186/2365; 3-day change 166/2441; RR 1.14, 95% CI 0.93 to 1.39). This result was unaffected by whether infusion through the catheter was continuous or intermittent. We also analysed the data by number of device days and again no differences between groups were observed (RR 1.03, 95% CI 0.84 to 1.27; P = 0.75). One trial assessed all-cause bloodstream infection. There was no difference in this outcome between the two groups (clinically-indicated 4/1593 (0.02%); routine change 9/1690 (0.05%); P = 0.21). Cannulation costs were lower by approximately AUD 7.00 in the clinically-indicated group (mean difference (MD) -6.96, 95% CI -9.05 to -4.86; P ≤ 0.00001). AUTHORS' CONCLUSIONS: The review found no evidence to support changing catheters every 72 to 96 hours. Consequently, healthcare organisations may consider changing to a policy whereby catheters are changed only if clinically indicated. This would provide significant cost savings and would spare patients the unnecessary pain of routine re-sites in the absence of clinical indications. To minimise peripheral catheter-related complications, the insertion site should be inspected at each shift change and the catheter removed if signs of inflammation, infiltration, or blockage are present. OBJECTIVES: To assess the effects of removing peripheral IV catheters when clinically indicated compared with removing and re-siting the catheter routinely. SEARCH METHODS: For this update the Cochrane Peripheral Vascular Diseases (PVD) Group Trials Search Co-ordinator searched the PVD Specialised Register (December 2012) and CENTRAL (2012, Issue 11). We also searched MEDLINE (last searched October 2012) and clinical trials registries. SELECTION CRITERIA: Randomised controlled trials that compared routine removal of peripheral IV catheters with removal only when clinically indicated in hospitalised or community dwelling patients receiving continuous or intermittent infusions. DATA COLLECTION AND ANALYSIS: Two review authors independently assessed trial quality and extracted data. MAIN RESULTS: Seven trials with a total of 4895 patients were included in the review. Catheter-related bloodstream infection (CRBSI) was assessed in five trials (4806 patients). There was no significant between group difference in the CRBSI rate (clinically-indicated 1/2365; routine change 2/2441). The risk ratio (RR) was 0.61 but the confidence interval (CI) was wide, creating uncertainty around the estimate (95% CI 0.08 to 4.68; P = 0.64). No difference in phlebitis rates was found whether catheters were changed according to clinical indications or routinely (clinically-indicated 186/2365; 3-day change 166/2441; RR 1.14, 95% CI 0.93 to 1.39). This result was unaffected by whether infusion through the catheter was continuous or intermittent. We also analysed the data by number of device days and again no differences between groups were observed (RR 1.03, 95% CI 0.84 to 1.27; P = 0.75). One trial assessed all-cause bloodstream infection. There was no difference in this outcome between the two groups (clinically-indicated 4/1593 (0.02%); routine change 9/1690 (0.05%); P = 0.21). Cannulation costs were lower by approximately AUD 7.00 in the clinically-indicated group (mean difference (MD) -6.96, 95% CI -9.05 to -4.86; P ≤ 0.00001). AUTHORS' CONCLUSIONS: The review found no evidence to support changing catheters every 72 to 96 hours. Consequently, healthcare organisations may consider changing to a policy whereby catheters are changed only if clinically indicated. This would provide significant cost savings and would spare patients the unnecessary pain of routine re-sites in the absence of clinical indications. To minimise peripheral catheter-related complications, the insertion site should be inspected at each shift change and the catheter removed if signs of inflammation, infiltration, or blockage are present.
Resumo:
Purpose: To develop, using dacarbazine as a model, reliable techniques for measuring DNA damage and repair as pharmacodynamic endpoints for patients receiving chemotherapy. Methods: A group of 39 patients with malignant melanoma were treated with dacarbazine 1 g/m2 i.v. every 21 days. Tamoxifen 20 mg daily was commenced 24 h after the first infusion and continued until 3 weeks after the last cycle of chemotherapy. DNA strand breaks formed during dacarbazine-induced DNA damage and repair were measured in individual cells by the alkaline comet assay. DNA methyl adducts were quantified by measuring urinary 3-methyladenine (3-MeA) excretion using immunoaffinity ELISA. Venous blood was taken on cycles 1 and 2 for separation of peripheral blood lymphocytes (PBLs) for measurement of DNA strand breaks. Results: Wide interpatient variation in PBL DNA strand breaks occurred following chemotherapy, with a peak at 4 h (median 26.6 h, interquartile range 14.75- 40.5 h) and incomplete repair by 24 h. Similarly, there was a range of 3-MeA excretion with peak levels 4-10 h after chemotherapy (median 33 nmol/h, interquartile range 20.448.65 nmol/h). Peak 3-MeA excretion was positively correlated with DNA strand breaks at 4 h (Spearman's correlation coefficient, r = 0.39, P = 0.036) and 24 h (r = 0.46, P = 0.01). Drug-induced emesis correlated with PBL DNA strand breaks (Mann Whitney U-test, P = 0.03) but not with peak 3-MeA excretion. Conclusions: DNA damage and repair following cytotoxic chemotherapy can be measured in vivo by the alkaline comet assay and by urinary 3-MeA excretion in patients receiving chemotherapy.