114 resultados para Turbulent Heat Transfer
em Queensland University of Technology - ePrints Archive
Resumo:
Numerical study has been performed in this study to investigate the turbulent convection heat transfer on a rectangular plate mounted over a flat surface. Thermal and fluid dynamic performances of extended surfaces having various types of lateral perforations with square, circular, triangular and hexagonal cross sections are investigated. RANS (Reynolds averaged Navier–Stokes) based modified k–ω turbulence model is used to calculate the fluid flow and heat transfer parameters. Numerical results are compared with the results of previously published experimental data and obtained results are in reasonable agreement. Flow and heat transfer parameters are presented for Reynolds numbers from 2000 to 5000 based on the fin thickness.
Resumo:
The heat transfer through the attics of buildings under realistic thermal forcing has been considered in this study. A periodic temperature boundary condition is applied on the sloping walls of the attic to show the basic flow features in the attic space over diurnal cycles. The numerical results reveal that, during the daytime heating stage, the flow in the attic space is stratified; whereas at the night-time cooling stage, the flow becomes unstable. A symmetrical solution is seen for relatively low Rayleigh numbers. However, as the Ra gradually increases, a transition occurs at a critical value of Ra. Above this critical value, an asymmetrical solution exhibiting a pitchfork bifurcation arises at the night-time. It is also found that the calculated heat transfer rate at the night-time cooling stage is much higher than that during the daytime heating stage.
Resumo:
Unsteady natural convection inside a triangular cavity subject to a non-instantaneous heating on the inclined walls in the form of an imposed temperature which increases linearly up to a prescribed steady value over a prescribed time is reported. The development of the flow from start-up to a steady-state has been described based on scaling analyses and direct numerical simulations. The ramp temperature has been chosen in such a way that the boundary layer is reached a quasi-steady mode before the growth of the temperature is completed. In this mode the thermal boundary layer at first grows in thickness, then contracts with increasing time. However, if the imposed wall temperature growth period is sufficiently short, the boundary layer develops differently. It is seen that the shape of many houses are isosceles triangular cross-section. The heat transfer process through the roof of the attic-shaped space should be well understood. Because, in the building energy, one of the most important objectives for design and construction of houses is to provide thermal comfort for occupants. Moreover, in the present energy-conscious society it is also a requirement for houses to be energy efficient, i.e. the energy consumption for heating or air-conditioning houses must be minimized.
Resumo:
This paper presents a review of studies on natural convection heat transfer in the triangular enclosure namely, in attic-shaped space. Much research activity has been devoted to this topic over the last three decades with a view to providing thermal comfort to the occupants in attic-shaped buildings and to minimising the energy costs associated with heating and air-conditioning. Two basic thermal boundary conditions of attic are considered to represent hot and cold climates or day and night time. This paper also reports on a significant number of studies which have been performed recently on other topics related to the attic space, for example, attics subject to localized heating and attics filled with porous media.
Resumo:
A numerical investigation has been carried out for the coupled thermal boundary layers on both sides of a partition placed in an isosceles triangular enclosure along its middle symmetric line. The working fluid is considered as air which is initially quiescent. A sudden temperature difference between two zones of the enclosure has been imposed to trigger the natural convection. It is anticipated from the numerical simulations that the coupled thermal boundary layers development adjacent to the partition undergoes three distinct stages; namely an initial stage, a transitional stage and a steady state stage. Time dependent features of the coupled thermal boundary layers as well as the overall natural convection flow in the partitioned enclosure have been discussed and compared with the non-partitioned enclosure. Moreover, heat transfer as a form of local and overall average Nusselt number through the coupled thermal boundary layers and the inclined walls is also examined. The details results will be discussed in the full paper.
Resumo:
Natural convection thermal boundary layer adjacent to the heated inclined wall of a right angled triangle with an adiabatic fin attached to that surface is investigated by numerical simulations. The finite volume based unsteady numerical model is adopted for the simulation. It is revealed from the numerical results that the development of the boundary layer along the inclined surface is characterized by three distinct stages, i.e. a start-up stage, a transitional stage and a steady stage. These three stages can be clearly identified from the numerical simulations. Moreover, in presence of adiabatic fin, the thermal boundary layer adjacent to the inclined wall breaks initially. However, it is reattached with the downstream boundary layer next to the fin. More attention has been given to the boundary layer development near the fin area.
Resumo:
A numerical investigation has been carried out for the coupled thermal boundary layers on both sides of a partition placed in an isosceles triangular enclosure along its middle symmetric line. The working fluid is considered as air which is initially quiescent. A sudden temperature difference between two zones of the enclosure has been imposed to trigger the natural convection. It is anticipated from the numerical simulations that the coupled thermal boundary layers development adjacent to the partition undergoes three distinct stages; namely an initial stage, a transitional stage and a steady state stage. Time dependent features of the coupled thermal boundary layers as well as the overall natural convection flow in the partitioned enclosure have been discussed and compared with the non-partitioned enclosure. Moreover, heat transfer as a form of local and overall average Nusselt number through the coupled thermal boundary layers and the inclined walls is also examined.
Resumo:
Numerical investigation is carried out for natural convection heat transfer in an isosceles triangular enclosure partitioned in the centre by a vertical wall with infinite conductivity. A sudden temperature difference between two zones of the enclosure has been imposed to trigger the natural convection. As a result, heat is transferred between both sides of the enclosure through the conducting vertical wall with natural convection boundary layers forming adjacent to the middle partition and two inclined surfaces. The Finite Volume based software, Ansys 14.5 (Fluent) is used for the numerical simulations. The numerical results are obtained for different values of aspect ratio, A (0.2, 0.5 and 1.0) and Rayleigh number, Ra (10^5 <= Ra <= 10^8) for a fixed Prandtl number, Pr = 0.72 of air. It is anticipated from the numerical simulations that the coupled thermal boundary layers development adjacent to the partition undergoes several distinct stages including an initial stage, a transitional stage and a steady stage. Time dependent features of the coupled thermal boundary layers as well as the overall natural convection flow in the partitioned enclosure have been discussed in this study.
Resumo:
Natural convection thermal boundary layer adjacent to the heated inclined wall of a right angled triangle with an adiabatic fin attached to that surface is investigated by numerical simulations. The finite volume based unsteady numerical model is adopted for the simulation. It is revealed from the numerical results that the development of the boundary layer along the inclined surface is characterized by three distinct stages, i.e. a start-up stage, a transitional stage and a steady stage. These three stages can be clearly identified from the numerical simulations. Moreover, in presence of adiabatic fin, the thermal boundary layer adjacent to the inclined wall breaks initially. However, it is reattached with the downstream boundary layer next to the fin. More attention has been given to the boundary layer development near the fin area.
Resumo:
Numerical simulations of thermomagnetic convection of paramagnetic fluids placed in a micro-gravity condition (g ≈ 0) and under a uniform vertical gradient magnetic field in an open ended square enclosure with ramp heating temperature condition applied on a vertical wall is investigated in this study. In presence of the strong magnetic gradient field thermal convection of the paramagnetic fluid might take place even in a zero-gravity environment as a direct consequence of temperature differences occurring within the fluid. The thermal boundary layer develops adjacent to the hot wall as soon as the ramp temperature condition is applied on it. There are two scenarios can be observed based on the ramp heating time. The steady state of the thermal boundary layer can be reached before the ramp time is finished or vice versa. If the ramp time is larger than the quasi-steady time then the thermal boundary layer is in a quasi-steady mode with convection balancing conduction after the quasi-steady time. Further increase of the heat input simply accelerates the flow to maintain the proper thermal balance. Finally, the boundary layer becomes completely steady state when the ramp time is finished. Effects of magnetic Rayleigh number, Prandtl number and paramagnetic fluid parameter on the flow pattern and heat transfer are presented.
Resumo:
Stagnation-point total heat transfer was measured on a 1:27.7 model of the Flight Investigation of Reentry Environment II flight vehicle. Experiments were performed in the X1 expansion tube at an equivalent flight velocity and static enthalpy of 11 km/s and 12.7 MJ/kg, respectively. Conditions were chosen to replicate the flight condition at a total flight time of 1639.5 s, where radiation contributed an estimated 17-36% of the total heat transfer. This contribution is theorized to reduce to <2% in the scaled experiments, and the heating environment on the test model was expected to be dominated by convection. A correlation between reported flight heating rates and expected experimental heating, referred to as the reduced flight value, was developed to predict the level of heating expected on the test model. At the given flow conditions, the reduced flight value was calculated to be 150 MW/m2. Average stagnation-point total heat transfer was measured to be 140 ± 7% W/m2, showing good agreement with the predicted value. Experimentally measured heat transfer was found to have good agreement of between 5 and 15% with a number of convective heating correlations, confirming that convection dominates the tunnel heating environment, and that useful experimental measurements could be made in weakly coupled radiating flow
Resumo:
Radiative and total heat transfer at the flow stagnation point of a 1:40.8 binary scaled model of the Titan Explorer vehicle were measured in the X3 expansion tube. Results from the current study illustrated that with the addition of CH4 into a N2 test gas radiative heat transfer could be detected. For a test gas of 5% CH4 and 95% N2, simulating an atmospheric model for Titanic aerocapture, approximately 4% of the experimentally measured total stagnation point heat transfer was found to be due to radiation. This was in comparison to < 1% measured for a test gas of pure nitrogen. When scaled to the flight vehicle, experimental results indicate a 64% contribution of radiation (test gas 5% CH4/95% N2). Previous numerical results however have predicted this contribution to be between 80-92%. Thus, experimental results from the current study suggest that numerical analyses are over-predicting the radiative heat transfer on the flight vehicle.