136 resultados para Trans-directing ability
em Queensland University of Technology - ePrints Archive
Resumo:
There has been much controversy over the Trans-Pacific Partnership (TPP) – a plurilateral trade agreement involving a dozen nations from throughout the Pacific Rim – and its impact upon the environment, biodiversity, and climate change. The secretive treaty negotiations involve Australia and New Zealand; countries from South East Asia such as Brunei Darussalam, Malaysia, Singapore, Vietnam, and Japan; the South American nations of Peru and Chile; and the members of the 1994 North American Free Trade Agreement (NAFTA), Canada, Mexico and the United States. There was an agreement reached between the parties in October 2015. The participants asserted: ‘We expect this historic agreement to promote economic growth, support higher-paying jobs; enhance innovation, productivity and competitiveness; raise living standards; reduce poverty in our countries; and to promote transparency, good governance, and strong labor and environmental protections.’ The final texts of the agreement were published in November 2015. There has been discussion as to whether other countries – such as Indonesia, the Philippines, and South Korea – will join the deal. There has been much debate about the impact of this proposed treaty upon intellectual property, the environment, biodiversity and climate change. There have been similar concerns about the Trans-Atlantic Trade and Investment Partnership (TTIP) – a proposed trade agreement between the United States and the European Union. In 2011, the United States Trade Representative developed a Green Paper on trade, conservation, and the environment in the context of the TPP. In its rhetoric, the United States Trade Representative has maintained that it has been pushing for strong, enforceable environmental standards in the TPP. In a key statement in 2014, the United States Trade Representative Mike Froman insisted: ‘The United States’ position on the environment in the Trans-Pacific Partnership negotiations is this: environmental stewardship is a core American value, and we will insist on a robust, fully enforceable environment chapter in the TPP or we will not come to agreement.’ The United States Trade Representative maintained: ‘Our proposals in the TPP are centered around the enforcement of environmental laws, including those implementing multilateral environmental agreements (MEAs) in TPP partner countries, and also around trailblazing, first-ever conservation proposals that will raise standards across the region’. Moreover, the United States Trade Representative asserted: ‘Furthermore, our proposals would enhance international cooperation and create new opportunities for public participation in environmental governance and enforcement.’ The United States Trade Representative has provided this public outline of the Environment Chapter of the TPP: A meaningful outcome on environment will ensure that the agreement appropriately addresses important trade and environment challenges and enhances the mutual supportiveness of trade and environment. The Trans-Pacific Partnership countries share the view that the environment text should include effective provisions on trade-related issues that would help to reinforce environmental protection and are discussing an effective institutional arrangement to oversee implementation and a specific cooperation framework for addressing capacity building needs. They also are discussing proposals on new issues, such as marine fisheries and other conservation issues, biodiversity, invasive alien species, climate change, and environmental goods and services. Mark Linscott, an assistant Trade Representative testified: ‘An environment chapter in the TPP should strengthen country commitments to enforce their environmental laws and regulations, including in areas related to ocean and fisheries governance, through the effective enforcement obligation subject to dispute settlement.’ Inside US Trade has commented: ‘While not initially expected to be among the most difficult areas, the environment chapter has emerged as a formidable challenge, partly due to disagreement over the United States proposal to make environmental obligations binding under the TPP dispute settlement mechanism’. Joshua Meltzer from the Brookings Institute contended that the trade agreement could be a boon for the protection of the environment in the Pacific Rim: Whether it is depleting fisheries, declining biodiversity or reduced space in the atmosphere for Greenhouse Gas emissions, the underlying issue is resource scarcity. And in a world where an additional 3 billion people are expected to enter the middle class over the next 15 years, countries need to find new and creative ways to cooperate in order to satisfy the legitimate needs of their population for growth and opportunity while using resources in a manner that is sustainable for current and future generations. The TPP parties already represent a diverse range of developed and developing countries. Should the TPP become a free trade agreement of the Asia-Pacific region, it will include the main developed and developing countries and will be a strong basis for building a global consensus on these trade and environmental issues. The TPP has been promoted by its proponents as a boon to the environment. The United States Trade Representative has maintained that the TPP will protect the environment: ‘The United States’ position on the environment in the TPP negotiations is this: environmental stewardship is a core American value, and we will insist on a robust, fully enforceable environment chapter in the TPP or we will not come to agreement.’ The United States Trade Representative discussed ‘Trade for a Greener World’ on World Environment Day. Andrew Robb, at the time the Australian Trade and Investment Minister, vowed that the TPP will contain safeguards for the protection of the environment. In November 2015, after the release of the TPP text, Rohan Patel, the Special Assistant to the President and Deputy Director of Intergovernmental Affairs, sought to defend the environmental credentials of the TPP. He contended that the deal had been supported by the Nature Conservancy, the International Fund for Animal Welfare, the Joint Ocean Commission Initiative, the World Wildlife Fund, and World Animal Protection. The United States Congress, though, has been conflicted by the United States Trade Representative’s arguments about the TPP and the environment. In 2012, members of the United States Congress - including Senator Ron Wyden (D-OR), Olympia Snowe (R-ME), and John Kerry (D-MA) – wrote a letter, arguing that the trade agreement needs to provide strong protection for the environment: ‘We believe that a '21st century agreement' must have an environment chapter that guarantees ongoing sustainable trade and creates jobs, and this is what American businesses and consumers want and expect also.’ The group stressed that ‘A binding and enforceable TPP environment chapter that stands up for American interests is critical to our support of the TPP’. The Congressional leaders maintained: ‘We believe the 2007 bipartisan congressional consensus on environmental provisions included in recent trade agreements should serve as the framework for the environment chapter of the TPP.’ In 2013, senior members of the Democratic leadership expressed their opposition to granting President Barack Obama a fast-track authority in respect of the TPP House of Representatives Minority Leader Nancy Pelosi said: ‘No on fast-track – Camp-Baucus – out of the question.’ Senator Majority leader Harry Reid commented: ‘I’m against Fast-Track: Everyone would be well-advised to push this right now.’ Senator Elizabeth Warren has been particularly critical of the process and the substance of the negotiations in the TPP: From what I hear, Wall Street, pharmaceuticals, telecom, big polluters and outsourcers are all salivating at the chance to rig the deal in the upcoming trade talks. So the question is, Why are the trade talks secret? You’ll love this answer. Boy, the things you learn on Capitol Hill. I actually have had supporters of the deal say to me ‘They have to be secret, because if the American people knew what was actually in them, they would be opposed. Think about that. Real people, people whose jobs are at stake, small-business owners who don’t want to compete with overseas companies that dump their waste in rivers and hire workers for a dollar a day—those people, people without an army of lobbyists—they would be opposed. I believe if people across this country would be opposed to a particular trade agreement, then maybe that trade agreement should not happen. The Finance Committee in the United States Congress deliberated over the Trans-Pacific Partnership negotiations in 2014. The new chair Ron Wyden has argued that there needs to be greater transparency in trade. Nonetheless, he has mooted the possibility of a ‘smart-track’ to reconcile the competing demands of the Obama Administration, and United States Congress. Wyden insisted: ‘The new breed of trade challenges spawned over the last generation must be addressed in imaginative new policies and locked into enforceable, ambitious, job-generating trade agreements.’ He emphasized that such agreements ‘must reflect the need for a free and open Internet, strong labor rights and environmental protections.’ Elder Democrat Sander Levin warned that the TPP failed to provide proper protection for the environment: The TPP parties are considering a different structure to protect the environment than the one adopted in the May 10 Agreement, which directly incorporated seven multilateral environmental agreements into the text of past trade agreements. While the form is less important than the substance, the TPP must provide an overall level of environmental protection that upholds and builds upon the May 10 standard, including fully enforceable obligations. But many of our trading partners are actively seeking to weaken the text to the point of falling short of that standard, including on key issues like conservation. Nonetheless, 2015, President Barack Obama was able to secure the overall support of the United States Congress for his ‘fast-track’ authority. This was made possible by the Republicans and dissident Democrats. Notably, Oregon Senator Ron Wyden switched sides, and was transformed from a critic of the TPP to an apologist for the TPP. For their part, green political parties and civil society organisations have been concerned about the secretive nature of the negotiations; and the substantive implications of the treaty for the environment. Environmental groups and climate advocates have been sceptical of the environmental claims made by the White House for the TPP. The Green Party of Aotearoa New Zealand, the Australian Greens and the Green Party of Canada have released a joint declaration on the TPP observing: ‘More than just another trade agreement, the TPP provisions could hinder access to safe, affordable medicines, weaken local content rules for media, stifle high-tech innovation, and even restrict the ability of future governments to legislate for the good of public health and the environment’. In the United States, civil society groups such as the Sierra Club, Public Citizen, WWF, the Friends of the Earth, the Rainforest Action Network and 350.org have raised concerns about the TPP and the environment. Allison Chin, President of the Sierra Club, complained about the lack of transparency, due process, and public participation in the TPP talks: ‘This is a stealth affront to the principles of our democracy.’ Maude Barlow’s The Council of Canadians has also been concerned about the TPP and environmental justice. New Zealand Sustainability Council executive director Simon Terry said the agreement showed ‘minimal real gains for nature’. A number of organisations have joined a grand coalition of civil society organisations, which are opposed to the grant of a fast-track. On the 15th January 2013, WikiLeaks released the draft Environment Chapter of the TPP - along with a report by the Chairs of the Environmental Working Group. Julian Assange, WikiLeaks' publisher, stated: ‘Today's WikiLeaks release shows that the public sweetener in the TPP is just media sugar water.’ He observed: ‘The fabled TPP environmental chapter turns out to be a toothless public relations exercise with no enforcement mechanism.’ This article provides a critical examination of the draft Environment Chapter of the TPP. The overall argument of the article is that the Environment Chapter of the TPP is an exercise in greenwashing – it is a public relations exercise by the United States Trade Representative, rather than a substantive regime for the protection of the environment in the Pacific Rim. Greenwashing has long been a problem in commerce, in which companies making misleading and deceptive claims about the environment. In his 2012 book, Greenwash: Big Brands and Carbon Scams, Guy Pearse considers the rise of green marketing and greenwashing. Government greenwashing is also a significant issue. In his book Storms of My Grandchildren, the climate scientist James Hansen raises his concerns about government greenwashing. Such a problem is apparent with the TPP – in which there was a gap between the assertions of the United States Government, and the reality of the agreement. This article contends that the TPP fails to meet the expectations created by President Barack Obama, the White House, and the United States Trade Representative about the environmental value of the agreement. First, this piece considers the relationship of the TPP to multilateral environmental treaties. Second, it explores whether the provisions in respect of the environment are enforceable. Third, this article examines the treatment of trade and biodiversity in the TPP. Fourth, this study considers the question of marine capture fisheries. Fifth, there is an evaluation of the cursory text in the TPP on conservation. Sixth, the article considers trade in environmental services under the TPP. Seventh, this article highlights the tensions between the TPP and substantive international climate action. It is submitted that the TPP undermines effective and meaningful government action and regulation in respect of climate change. The conclusion also highlights that a number of other chapters of the TPP will impact upon the protection of the environment – including the Investment Chapter, the Intellectual Property Chapter, the Technical Barriers to Trade Chapter, and the text on public procurement.
Resumo:
Inclusions of sp-hybridised, trans-polyacetylene [trans-(CH)x] and poly(p-phenylene vinylene) (PPV) chains are revealed using resonant Raman scattering (RRS) investigation of amorphous hydrogenated carbon (a-C:H) films in the near IR – UV range. The RRS spectra of trans-(CH)x core Ag modes and the PPV CC-H phenylene mode are found to transform and disperse as the laser excitation energy ћωL is increased from near IR through visible to UV, whereas sp-bonded inclusions only become evident in UV. This is attributed to ћωL probing of trans-(CH)x chain inhomogeneity and the distribution of chains with varying conjugation length; for PPV to the resonant probing of phelynene ring disorder; and for sp segments, to ћωL probing of a local band gap of end-terminated polyynes. The IR spectra analysis confirmed the presence of sp, trans-(CH)x and PPV inclusions. The obtained RRS results for a-C:H denote differentiation between the core Ag trans-(CH)x modes and the PPV phenylene mode. Furthermore, it was found that at various laser excitation energies the changes in Raman spectra features for trans-(CH)x segments included in an amorphous carbon matrix are the same as in bulk trans-polyacetylene. The latter finding can be used to facilitate identification of trans-(CH)x in the spectra of complex carbonaceous materials.
Resumo:
This paper presents a brief analysis of Seoul trans-youth’s search for identity through urban social networking, arguing that technological, socio-cultural and environmental (urban) contexts frame how mobility and ubiquity are (re)created in Seoul. The paper is empirically based on fieldwork conducted in Seoul, South Korea, from 2007 to 2008 as part of a research project on the mobile play culture of Seoul trans-youth(a term that will be explained in detail in the following section). Shared Visual Ethnography (SVE) was used as the research method which involved sharing of visual ethnographic data that were created by the participants. More specifically, the participants were asked to take photos, which were then shared and discussed with other participants and the researcher on the photo-sharing service Flickr. The research also involved a questionnaire and daily activity diaries, as well as interviews. A total of 44 Korean transyouths – including 23 females and 21 males – participated in interviews and photo-sharing. The paper draws specifically on the qualitative data from individual and/or group interviews, the total duration of which was 2–2.5 hours for each participant.
Resumo:
We examined differences in response latencies obtained during a validated video-based hazard perception driving test between three healthy, community-dwelling groups: 22 mid-aged (35-55 years), 34 young-old (65-74 years), and 23 old-old (75-84 years) current drivers, matched for gender, education level, and vocabulary. We found no significant difference in performance between mid-aged and young-old groups, but the old-old group was significantly slower than the other two groups. The differences between the old-old group and the other groups combined were independently mediated by useful field of view (UFOV), contrast sensitivity, and simple reaction time measures. Given that hazard perception latency has been linked with increased crash risk, these results are consistent with the idea that increased crash risk in older adults could be a function of poorer hazard perception, though this decline does not appear to manifest until age 75+ in healthy drivers.
Resumo:
Over the past decade, plants have been used as expression hosts for the production of pharmaceutically important and commercially valuable proteins. Plants offer many advantages over other expression systems such as lower production costs, rapid scale up of production, similar post-translational modification as animals and the low likelihood of contamination with animal pathogens, microbial toxins or oncogenic sequences. However, improving recombinant protein yield remains one of the greatest challenges to molecular farming. In-Plant Activation (InPAct) is a newly developed technology that offers activatable and high-level expression of heterologous proteins in plants. InPAct vectors contain the geminivirus cis elements essential for rolling circle replication (RCR) and are arranged such that the gene of interest is only expressed in the presence of the cognate viral replication-associated protein (Rep). The expression of Rep in planta may be controlled by a tissue-specific, developmentally regulated or chemically inducible promoter such that heterologous protein accumulation can be spatially and temporally controlled. One of the challenges for the successful exploitation of InPAct technology is the control of Rep expression as even very low levels of this protein can reduce transformation efficiency, cause abnormal phenotypes and premature activation of the InPAct vector in regenerated plants. Tight regulation over transgene expression is also essential if expressing cytotoxic products. Unfortunately, many tissue-specific and inducible promoters are unsuitable for controlling expression of Rep due to low basal activity in the absence of inducer or in tissues other than the target tissue. This PhD aimed to control Rep activity through the production of single chain variable fragments (scFvs) specific to the motif III of Tobacco yellow dwarf virus (TbYDV) Rep. Due to the important role played by the conserved motif III in the RCR, it was postulated that such scFvs can be used to neutralise the activity of the low amount of Rep expressed from a “leaky” inducible promoter, thus preventing activation of the TbYDV-based InPAct vector until intentional induction. Such scFvs could also offer the potential to confer partial or complete resistance to TbYDV, and possibly heterologous viruses as motif III is conserved between geminiviruses. Studies were first undertaken to determine the levels of TbYDV Rep and TbYDV replication-associated protein A (RepA) required for optimal transgene expression from a TbYDV-based InPAct vector. Transient assays in a non-regenerable Nicotiana tabacum (NT-1) cell line were undertaken using a TbYDV-based InPAct vector containing the uidA reporter gene (encoding GUS) in combination with TbYDV Rep and RepA under the control of promoters with high (CaMV 35S) or low (Banana bunchy top virus DNA-R, BT1) activity. The replication enhancer protein of Tomato leaf curl begomovirus (ToLCV), REn, was also used in some co-bombardment experiments to examine whether RepA could be substituted by a replication enhancer from another geminivirus genus. GUS expression was observed both quantitatively and qualitatively by fluorometric and histochemical assays, respectively. GUS expression from the TbYDV-based InPAct vector was found to be greater when Rep was expected to be expressed at low levels (BT1 promoter) rather than high levels (35S promoter). GUS expression was further enhanced when Rep and RepA were co-bombarded with a low ratio of Rep to RepA. Substituting TbYDV RepA with ToLCV REn also enhanced GUS expression but more importantly highest GUS expression was observed when cells were co-transformed with expression vectors directing low levels of Rep and high levels of RepA irrespective of the level of REn. In this case, GUS expression was approximately 74-fold higher than that from a non-replicating vector. The use of different terminators, namely CaMV 35S and Nos terminators, in InPAct vectors was found to influence GUS expression. In the presence of Rep, GUS expression was greater using pInPActGUS-Nos rather than pInPActGUS-35S. The only instance of GUS expression being greater from vectors containing the 35S terminator was when comparing expression from cells transformed with Rep, RepA and REnexpressing vectors and either non-replicating vectors, p35SGS-Nos or p35SGS-35S. This difference was most likely caused by an interaction of viral replication proteins with each other and the terminators. These results indicated that (i) the level of replication associated proteins is critical to high transgene expression, (ii) the choice of terminator within the InPAct vector may affect expression levels and (iii) very low levels of Rep can activate InPAct vectors hence controlling its activity is critical. Prior to generating recombinant scFvs, a recombinant TbYDV Rep was produced in E. coli to act as a control to enable the screening for Rep-specific antibodies. A bacterial expression vector was constructed to express recombinant TbYDV Rep with an Nterminal His-tag (N-His-Rep). Despite investigating several purification techniques including Ni-NTA, anion exchange, hydrophobic interaction and size exclusion chromatography, N-His-Rep could only be partially purified using a Ni-NTA column under native conditions. Although it was not certain that this recombinant N-His-Rep had the same conformation as the native TbYDV Rep and was functional, results from an electromobility shift assay (EMSA) showed that N-His-Rep was able to interact with the TbYDV LIR and was, therefore, possibly functional. Two hybridoma cell lines from mice, immunised with a synthetic peptide containing the TbYDV Rep motif III amino acid sequence, were generated by GenScript (USA). Monoclonal antibodies secreted by the two hybridoma cell lines were first screened against denatured N-His-Rep in Western analysis. After demonstrating their ability to bind N-His-Rep, two scFvs (scFv1 and scFv2) were generated using a PCR-based approach. Whereas the variable heavy chain (VH) from both cell lines could be amplified, only the variable light chain (VL) from cell line 2 was amplified. As a result, scFv1 contained VH and VL from cell line 1, whereas scFv2 contained VH from cell line 2 and VL from cell line 1. Both scFvs were first expressed in E. coli in order to evaluate their affinity to the recombinant TbYDV N-His-Rep. The preliminary results demonstrated that both scFvs were able to bind to the denatured N-His-Rep. However, EMSAs revealed that only scFv2 was able to bind to native N-His-Rep and prevent it from interacting with the TbYDV LIR. Each scFv was cloned into plant expression vectors and co-bombarded into NT-1 cells with the TbYDV-based InPAct GUS expression vector and pBT1-Rep to examine whether the scFvs could prevent Rep from mediating RCR. Although it was expected that the addition of the scFvs would result in decreased GUS expression, GUS expression was found to slightly increase. This increase was even more pronounced when the scFvs were targeted to the cell nucleus by the inclusion of the Simian virus 40 large T antigen (SV40) nuclear localisation signal (NLS). It was postulated that the scFvs were binding to a proportion of Rep, leaving a small amount available to mediate RCR. The outcomes of this project provide evidence that very high levels of recombinant protein can theoretically be expressed using InPAct vectors with judicious selection and control of viral replication proteins. However, the question of whether the scFvs generated in this project have sufficient affinity for TbYDV Rep to prevent its activity in a stably transformed plant remains unknown. It may be that other scFvs with different combinations of VH and VL may have greater affinity for TbYDV Rep. Such scFvs, when expressed at high levels in planta, might also confer resistance to TbYDV and possibly heterologous geminiviruses.
Resumo:
The unusual (1:1) complex ‘adduct’ salt of copper(II) with 4,5-dichlorophthalic acid (H2DCPA), having formula [Cu(H2O)4(C8H3Cl2O4) (C8H4Cl2O4)] . (C8H3Cl2O4) has been synthesized and characterized using single-crystal X-ray diffraction. Crystals are monoclinic, space group P21/c, with Z = 4 in a cell with dimensions a = 20.1376(7), b =12.8408(4) c = 12.1910(4) Å, β = 105.509(4)o. The complex is based on discrete tetragonally distorted octahedral [CuO6] coordination centres with the four water ligands occupying the square planar sites [Cu-O, 1.962(4)-1.987(4) Å] and the monodentate carboxyl-O donors of two DCPA ligand species in the axial sites. The first of these bonds [Cu-O, 2.341(4) Å] is with an oxygen of a HDCPA monoanion, the second with an oxygen of a H2DCPA acid species [Cu-O, 2.418(4) Å]. The un-coordinated ‘adduct’ molecule is a HDCPA counter anion which is strongly hydrogen-bonded to the coordinated H2DCPA ligand [O… O, 2.503(6) Å] while a number of peripheral intra- and intermolecular hydrogen-bonding interactions give a two-dimensional network structure.
Resumo:
Plants have been identified as promising expression systems for the commercial production of recombinant proteins. Plant-based protein production or “biofarming” offers a number of advantages over traditional expression systems in terms of scale of production, the capacity for post-translation processing, providing a product free of contaminants and cost effectiveness. A number of pharmaceutically important and commercially valuable proteins, such as antibodies, biopharmaceuticals and industrial enzymes are currently being produced in plant expression systems. However, several challenges still remain to improve recombinant protein yield with no ill effect on the host plant. The ability for transgenic plants to produce foreign proteins at commercially viable levels can be directly related to the level and cell specificity of the selected promoter driving the transgene. The accumulation of recombinant proteins may be controlled by a tissue-specific, developmentally-regulated or chemically-inducible promoter such that expression of recombinant proteins can be spatially- or temporally- controlled. The strict control of gene expression is particularly useful for proteins that are considered toxic and whose expression is likely to have a detrimental effect on plant growth. To date, the most commonly used promoter in plant biotechnology is the cauliflower mosaic virus (CaMV) 35S promoter which is used to drive strong, constitutive transgene expression in most organs of transgenic plants. Of particular interest to researchers in the Centre for Tropical Crops and Biocommodities at QUT are tissue-specific promoters for the accumulation of foreign proteins in the roots, seeds and fruit of various plant species, including tobacco, banana and sugarcane. Therefore this Masters project aimed to isolate and characterise root- and seed-specific promoters for the control of genes encoding recombinant proteins in plant-based expression systems. Additionally, the effects of matching cognate terminators with their respective gene promoters were assessed. The Arabidopsis root promoters ARSK1 and EIR1 were selected from the literature based on their reported limited root expression profiles. Both promoters were analysed using the PlantCARE database to identify putative motifs or cis-acting elements that may be associated with this activity. A number of motifs were identified in the ARSK1 promoter region including, WUN (wound-inducible), MBS (MYB binding site), Skn-1, and a RY core element (seed-specific) and in the EIR1 promoter region including, Skn-1 (seed-specific), Box-W1 (fungal elicitor), Aux-RR core (auxin response) and ABRE (ABA response). However, no previously reported root-specific cis-acting elements were observed in either promoter region. To confirm root specificity, both promoters, and truncated versions, were fused to the GUS reporter gene and the expression cassette introduced into Arabidopsis via Agrobacterium-mediated transformation. Despite the reported tissue-specific nature of these promoters, both upstream regulatory regions directed constitutive GUS expression in all transgenic plants. Further, similar levels of GUS expression from the ARSK1 promoter were directed by the control CaMV 35S promoter. The truncated version of the EIR1 promoter (1.2 Kb) showed some differences in the level of GUS expression compared to the 2.2 Kb promoter. Therefore, this suggests an enhancer element is contained in the 2.2 Kb upstream region that increases transgene expression. The Arabidopsis seed-specific genes ATS1 and ATS3 were selected from the literature based on their seed-specific expression profiles and gene expression confirmed in this study as seed-specific by RT-PCR analysis. The selected promoter regions were analysed using the PlantCARE database in order to identify any putative cis elements. The seed-specific motifs GCN4 and Skn-1 were identified in both promoter regions that are associated with elevated expression levels in the endosperm. Additionaly, the seed-specific RY element and the ABRE were located in the ATS1 promoter. Both promoters were fused to the GUS reporter gene and used to transform Arabidopsis plants. GUS expression from the putative promoters was consitutive in all transgenic Arabidopsis tissue tested. Importantly, the positive control FAE1 seed-specific promoter also directed constitutive GUS expression throughout transgenic Arabidopsis plants. The constitutive nature seen in all of the promoters used in this study was not anticipated. While variations in promoter activity can be caused by a number of influencing factors, the variation in promoter activity observed here would imply a major contributing factor common to all plant expression cassettes tested. All promoter constructs generated in this study were based on the binary vector pCAMBIA2300. This vector contains the plant selection gene (NPTII) under the transcriptional control of the duplicated CaMV 35S promoter. This CaMV 35S promoter contains two enhancer domains that confer strong, constitutive expression of the selection gene and is located immediately upstream of the promoter-GUS fusion. During the course of this project, Yoo et al. (2005) reported that transgene expression is significantly affected when the expression cassette is located on the same T-DNA as the 35S enhancer. It was concluded, the trans-acting effects of the enhancer activate and control transgene expression causing irregular expression patterns. This phenomenon seems the most plausible reason for the constitutive expression profiles observed with the root- and seed-specific promoters assessed in this study. The expression from some promoters can be influenced by their cognate terminator sequences. Therefore, the Arabidopsis ARSK1, EIR1, ATS1 and ATS3 terminator sequences were isolated and incorporated into expression cassettes containing the GUS reporter gene under the control of their cognate promoters. Again, unrestricted GUS activity was displayed throughout transgenic plants transformed with these reporter gene fusions. As previously discussed constitutive GUS expression was most likely due to the trans-acting effect of the upstream CaMV 35S promoter in the selection cassette located on the same T-DNA. The results obtained in this study make it impossible to assess the influence matching terminators with their cognate promoters have on transgene expression profiles. The obvious future direction of research continuing from this study would be to transform pBIN-based promoter-GUS fusions (ie. constructs containing no CaMV 35S promoter driving the plant selection gene) into Arabidopsis in order to determine the true tissue specificity of these promoters and evaluate the effects of their cognate 3’ terminator sequences. Further, promoter truncations based around the cis-elements identified here may assist in determining whether these motifs are in fact involved in the overall activity of the promoter.
Resumo:
Alginate microspheres are considered a promising material as a drug carrier in bone repair due to excellent biocompatibility, but their main disadvantage is low drug entrapment efficiency and non-controllable release. The aim of this study was to investigate the effect of incorporating mesoporous bioglass (MBG), non-mesoporous bioglass (BG) or hydroxyapatite (HAp) into alginate microspheres on their drug-loading and release properties. X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), and atomic emission spectroscopy (AES) were used to analyse the composition, structure and dissolution of bioactive inorganic materials and their microspheres. Dexamethasone (DEX)-loading and release ability of four microspheres were tested in phosphate buffered saline with varying pHs. Results showed that the drug-loading capacity was enhanced with the incorporation of bioactive inorganic materials into alginate microspheres. The MBG/Alginate microspheres had the highest drug loading ability. DEX release from alginate microspheres correlated to the dissolution of MBG, BG and HAp in PBS, and that the pH was an efficient factor in controlling the DEX release; a high pH resulted in greater DEX release, whereas a low pH delayed DEX release. In addition, MBG/alginate, BG/alginate and HAp/alginate microspheres had varying apatite-formation and dissolution abilities, which indicate that the composites would behave differently with respect to bioactivity. The study suggests that microspheres made of a composite of bioactive inorganic materials and alginate have a bioactivity and degradation profile which greatly improves their drug delivery capacity, thus enhancing their potential applications as bioactive filler materials for bone tissue regeneration.
Resumo:
In their studies, Eley and Meyer (2004) and Meyer and Cleary (1998) found that there are sources of variation in the affective and process dimensions of learning in mathematics and clinical diagnosis specific to each of these disciplines. Meyer and Shanahan (2002) argue that: General purpose models of student learning that are transportable across different discipline contexts cannot, by definition, be sensitive to sources of variation that may be subject-specific (2002. p. 204). In other words, to explain the differences in learning approaches and outcomes in a particular discipline, there are discipline-specific factors, which cannot be uncovered in general educational research. Meyer and Shanahan (2002) argue for a need to "seek additional sources of variation that are perhaps conceptually unique ... within the discourse of particular disciplines" (p. 204). In this paper, the development of an economics-specific construct (called economic thinking ability) is reported. The construct aims to measure discipline-sited ability of students that has important influence on learning in economics. Using this construct, economic thinking abilities of introductory and intermediate level economics students were measured prior to the commencement, and at the end, of their study over one semester. This enabled factors associated with students' pre-course economic thinking ability and their development in economic thinking ability to be investigated. The empirical findings will address the 'nature' versus 'nurture' debate in economics education (Frank, et aI., 1993; Frey et al., 1993; Haucap and Tobias 2003). The implications for future research in economics education will also be discussed.