645 resultados para Trans-acting Factors
em Queensland University of Technology - ePrints Archive
Resumo:
Plants have been identified as promising expression systems for the commercial production of recombinant proteins. Plant-based protein production or “biofarming” offers a number of advantages over traditional expression systems in terms of scale of production, the capacity for post-translation processing, providing a product free of contaminants and cost effectiveness. A number of pharmaceutically important and commercially valuable proteins, such as antibodies, biopharmaceuticals and industrial enzymes are currently being produced in plant expression systems. However, several challenges still remain to improve recombinant protein yield with no ill effect on the host plant. The ability for transgenic plants to produce foreign proteins at commercially viable levels can be directly related to the level and cell specificity of the selected promoter driving the transgene. The accumulation of recombinant proteins may be controlled by a tissue-specific, developmentally-regulated or chemically-inducible promoter such that expression of recombinant proteins can be spatially- or temporally- controlled. The strict control of gene expression is particularly useful for proteins that are considered toxic and whose expression is likely to have a detrimental effect on plant growth. To date, the most commonly used promoter in plant biotechnology is the cauliflower mosaic virus (CaMV) 35S promoter which is used to drive strong, constitutive transgene expression in most organs of transgenic plants. Of particular interest to researchers in the Centre for Tropical Crops and Biocommodities at QUT are tissue-specific promoters for the accumulation of foreign proteins in the roots, seeds and fruit of various plant species, including tobacco, banana and sugarcane. Therefore this Masters project aimed to isolate and characterise root- and seed-specific promoters for the control of genes encoding recombinant proteins in plant-based expression systems. Additionally, the effects of matching cognate terminators with their respective gene promoters were assessed. The Arabidopsis root promoters ARSK1 and EIR1 were selected from the literature based on their reported limited root expression profiles. Both promoters were analysed using the PlantCARE database to identify putative motifs or cis-acting elements that may be associated with this activity. A number of motifs were identified in the ARSK1 promoter region including, WUN (wound-inducible), MBS (MYB binding site), Skn-1, and a RY core element (seed-specific) and in the EIR1 promoter region including, Skn-1 (seed-specific), Box-W1 (fungal elicitor), Aux-RR core (auxin response) and ABRE (ABA response). However, no previously reported root-specific cis-acting elements were observed in either promoter region. To confirm root specificity, both promoters, and truncated versions, were fused to the GUS reporter gene and the expression cassette introduced into Arabidopsis via Agrobacterium-mediated transformation. Despite the reported tissue-specific nature of these promoters, both upstream regulatory regions directed constitutive GUS expression in all transgenic plants. Further, similar levels of GUS expression from the ARSK1 promoter were directed by the control CaMV 35S promoter. The truncated version of the EIR1 promoter (1.2 Kb) showed some differences in the level of GUS expression compared to the 2.2 Kb promoter. Therefore, this suggests an enhancer element is contained in the 2.2 Kb upstream region that increases transgene expression. The Arabidopsis seed-specific genes ATS1 and ATS3 were selected from the literature based on their seed-specific expression profiles and gene expression confirmed in this study as seed-specific by RT-PCR analysis. The selected promoter regions were analysed using the PlantCARE database in order to identify any putative cis elements. The seed-specific motifs GCN4 and Skn-1 were identified in both promoter regions that are associated with elevated expression levels in the endosperm. Additionaly, the seed-specific RY element and the ABRE were located in the ATS1 promoter. Both promoters were fused to the GUS reporter gene and used to transform Arabidopsis plants. GUS expression from the putative promoters was consitutive in all transgenic Arabidopsis tissue tested. Importantly, the positive control FAE1 seed-specific promoter also directed constitutive GUS expression throughout transgenic Arabidopsis plants. The constitutive nature seen in all of the promoters used in this study was not anticipated. While variations in promoter activity can be caused by a number of influencing factors, the variation in promoter activity observed here would imply a major contributing factor common to all plant expression cassettes tested. All promoter constructs generated in this study were based on the binary vector pCAMBIA2300. This vector contains the plant selection gene (NPTII) under the transcriptional control of the duplicated CaMV 35S promoter. This CaMV 35S promoter contains two enhancer domains that confer strong, constitutive expression of the selection gene and is located immediately upstream of the promoter-GUS fusion. During the course of this project, Yoo et al. (2005) reported that transgene expression is significantly affected when the expression cassette is located on the same T-DNA as the 35S enhancer. It was concluded, the trans-acting effects of the enhancer activate and control transgene expression causing irregular expression patterns. This phenomenon seems the most plausible reason for the constitutive expression profiles observed with the root- and seed-specific promoters assessed in this study. The expression from some promoters can be influenced by their cognate terminator sequences. Therefore, the Arabidopsis ARSK1, EIR1, ATS1 and ATS3 terminator sequences were isolated and incorporated into expression cassettes containing the GUS reporter gene under the control of their cognate promoters. Again, unrestricted GUS activity was displayed throughout transgenic plants transformed with these reporter gene fusions. As previously discussed constitutive GUS expression was most likely due to the trans-acting effect of the upstream CaMV 35S promoter in the selection cassette located on the same T-DNA. The results obtained in this study make it impossible to assess the influence matching terminators with their cognate promoters have on transgene expression profiles. The obvious future direction of research continuing from this study would be to transform pBIN-based promoter-GUS fusions (ie. constructs containing no CaMV 35S promoter driving the plant selection gene) into Arabidopsis in order to determine the true tissue specificity of these promoters and evaluate the effects of their cognate 3’ terminator sequences. Further, promoter truncations based around the cis-elements identified here may assist in determining whether these motifs are in fact involved in the overall activity of the promoter.
Resumo:
Cardiovascular disease (CVD) affects millions of people worldwide and is influenced by numerous factors, including lifestyle and genetics. Expression quantitative trait loci (eQTLs) influence gene expression and are good candidates for CVD risk. Founder-effect pedigrees can provide additional power to map genes associated with disease risk. Therefore, we identified eQTLs in the genetic isolate of Norfolk Island (NI) and tested for associations between these and CVD risk factors. We measured genome-wide transcript levels of blood lymphocytes in 330 individuals and used pedigree-based heritability analysis to identify heritable transcripts. eQTLs were identified by genome-wide association testing of these transcripts. Testing for association between CVD risk factors (i.e., blood lipids, blood pressure, and body fat indices) and eQTLs revealed 1,712 heritable transcripts (p < 0.05) with heritability values ranging from 0.18 to 0.84. From these, we identified 200 cis-acting and 70 trans-acting eQTLs (p < 1.84 × 10(-7)) An eQTL-centric analysis of CVD risk traits revealed multiple associations, including 12 previously associated with CVD-related traits. Trait versus eQTL regression modeling identified four CVD risk candidates (NAAA, PAPSS1, NME1, and PRDX1), all of which have known biological roles in disease. In addition, we implicated several genes previously associated with CVD risk traits, including MTHFR and FN3KRP. We have successfully identified a panel of eQTLs in the NI pedigree and used this to implicate several genes in CVD risk. Future studies are required for further assessing the functional importance of these eQTLs and whether the findings here also relate to outbred populations.
Resumo:
Background The Arabidopsis thaliana (Arabidopsis) DOUBLE-STRANDED RNA BINDING (DRB) protein family consists of five members, DRB1 to DRB5. The biogenesis of two developmentally important small RNA (sRNA) species, the microRNAs (miRNAs) and trans-acting small interfering RNAs (tasiRNAs) by DICER-LIKE (DCL) endonucleases requires the assistance of DRB1 and DRB4 respectively. The importance of miRNA-directed target gene expression in plant development is exemplified by the phenotypic consequence of loss of DRB1 activity (drb1 plants). Principal Findings Here we report that the developmental phenotype of the drb235 triple mutant plant is the result of deregulated miRNA biogenesis in the shoot apical meristem (SAM) region. The expression of DRB2, DRB3 and DRB5 in wild-type seedlings is restricted to the SAM region. Small RNA sequencing of the corresponding tissue of drb235 plants revealed altered miRNA accumulation. Approximately half of the miRNAs detected remained at levels equivalent to those of wild-type plants. However, the accumulation of the remaining miRNAs was either elevated or reduced in the triple mutant. Examination of different single and multiple drb mutants revealed a clear association between the loss of DRB2 activity and altered accumulation for both the elevated and reduced miRNA classes. Furthermore, we show that the constitutive over-expression of DRB2 outside of its wild-type expression domain can compensate for the loss of DRB1 activity in drb1 plants. Conclusions/Significance Our results suggest that in the SAM region, DRB2 is both antagonistic and synergistic to the role of DRB1 in miRNA biogenesis, adding an additional layer of gene regulatory complexity in this developmentally important tissue.
Resumo:
DOUBLE-STRANDED RNA BIN DIN G (DRB) proteins have been functionally characterized in viruses, prokaryotes and eukaryotes and are involved in all aspects of RNA biology. Arabidopsis thaliana (Arabidopsis) encodes five closely related DRB proteins, DRB1 to DRB5. DRB1 and DRB4 are required by DICER-LIKE (DCL) proteins DCL1 and DCL4 to accurately and efficiently process structurally distinct double-stranded RNA (dsRNA) precursor substrates in the microRNA (miRNA) and trans-acting small-interfering RNA (tasiRNA) biogenesis pathways respectively. We recently reported that DRB2 is also involved in the biogenesis of specific miRNA subsets. Furthermore, the severity of the developmental phenotype displayed by the drb235 triple mutant plant, compared with those expressed by either drb2, drb3 and drb5 single mutants, or double mutant combinations thereof, indicates that DRB3 and DRB5 function in the same non-canonical miRNA pathway as DRB2. Through the use of our artificial miRNA (amiRNA) plant expression vector, pBlueGreen 2,3 we demonstrate here that unlike DRB2, DRB3 and DRB5 are not involved in the dsRNA processing stages of the miRNA biogenesis pathway, but are required to mediate RNA silencing of target genes of DRB2-associated miRNA s. © 2012 Landes Bioscience.
Resumo:
Dicers are associated with double-stranded RNA-binding proteins (dsRBPs) in animals. In the plant, Arabidopsis, there are four dicer-like (DCL) proteins and five potential dsRBPs. These DCLs act redundantly and hierarchically. However, we show there is little or no redundancy or hierarchy amongst the DRBs in their DCL interactions. DCL1 operates exclusively with DRB1 to produce micro (mi)RNAs, DCL4 operates exclusively with DRB4 to produce trans-acting (ta) siRNAs and 21nt siRNAs from viral RNA. DCL2 and DCL3 produce viral siRNAs without requiring assistance from any dsRBP. DRB2, DRB3 and DRB5 appear unnecessary for mi-, tasi-, viral si-, or heterochromatinising siRNA production but act redundantly in a developmental pathway. © 2008 Federation of European Biochemical Societies.
Resumo:
Background: To report the incidence and risk factors for hypotony and estimate the risk of sympathetic ophthalmia following diode laser trans-scleral cyclophotocoagulation (TSCPC). Design: Retrospective study using data from a private tertiary glaucoma clinic and review of the literature. Participants: Seventy eyes of 70 patients with refractory glaucoma who received TSCPC treatment. Methods: Review of the records of consecutive patients who underwent TSCPC by a single ophthalmic surgeon and review of the literature. Main Outcome Measures: Hypotony (including phthisis bulbi), sympathetic ophthalmia. Results: Seven eyes (10%; CI 5-19%) developed hypotony and included 4 eyes that developed phthisis. Higher total energy delivered during TSCPC treatment was associated with an increased risk of hypotony: eyes that developed hypotony received a mean total energy of 192.5 ± 73.2 joules, compared to a mean of 152.9 ± 83.2 joules in hypotony-free cases. The difference in mean energy delivered between the hypotony and non-hypotony group was 38.53 (95% CI: -27.57 to 104.63). The risk of sympathetic ophthalmia estimated from a review of the published literature and current series was one in 1512, or 0.07% (CI 0.03% - 0.17%). Conclusions: Total laser energy is one of several risk factors that act in a sufficient component cause-model to produce hypotony in an individual patient. The small sample size precluded inference for other individual putative risk factors but titrating laser energy may help decrease the occurrence of hypotony. The risk of sympathetic ophthalmia calculated from the literature is likely an overestimate caused by publication bias.
Resumo:
Tyrosine trans-phosphorylation is a key event in receptor tyrosine kinase signaling, yet, the structural basis for this process has eluded definition. Here, we present the crystal structure of the FGF receptor 2 kinases caught in the act of trans-phosphorylation of Y769, the major C-terminal phosphorylation site. The structure reveals that enzyme- and substrate-acting kinases engage each other through elaborate and specific interactions not only in the immediate vicinity of Y769 and the enzyme active site, but also in regions that are as much of 18 A away from D626, the catalytic base in the enzyme active site. These interactions lead to an unprecedented level of specificity and precision during the trans-phosphorylation on Y769. Time-resolved mass spectrometry analysis supports the observed mechanism of trans-phosphorylation. Our data provide a molecular framework for understanding the mechanism of action of Kallmann syndrome mutations and the order of trans-phosphorylation reactions in FGFRs. We propose that the salient mechanistic features of Y769 trans-phosphorylation are applicable to trans-phosphorylation of the equivalent major phosphorylation sites in many other RTKs.
Resumo:
The purpose of this project was to conduct an empirical study that would result in findings that inform systemic policy development aimed at improving tertiary participation and attainment by students from low socioeconomic status (LSES) backgrounds in Queensland. The project focuses on systemic policy, initiatives and programs that encourage tertiary education participation and attainment by individuals from LSES backgrounds, rather than on institution-specific initiatives or programs. While the broad remit was to consider tertiary education participation, the study particularly highlights issues pertaining to LSES student participation and attainment in the higher education sector, given the notable under representation of this demographic subgroup in Australian universities. This study supports the strategic priority of addressing professional skills shortages and innovations aiming to improve human and social capital in the state of Queensland. The ultimate goal is to contribute to the enhancement of Queensland’s education and training system by maximising participation and attainment by people from LSES backgrounds in higher education, thereby improving their quality of life and future life choices and opportunities. The study addressed the following five research questions: 1. What are the major factors that promote or inhibit participation and attainment in tertiary education by LSES students in Queensland? 2. To what extent do systemic policies or practices(systemic factors) of Queensland’s tertiary education system promote or inhibit participation and attainment by LSES students? That is, what features of Queensland’s tertiary education system have a significant effect on participation and attainment by LSES students? 3. What system policies or practices are found to boost participation and attainment by LSES students in other jurisdictions? 4. What evidence is there to suggest that policies or practices that have boosted participation and attainment by LSES students in other jurisdictions would be successful if implemented in Queensland? 5. What are the implications of the research findings for Queensland’s tertiary education system to improve participation and attainment by LSES students? The project adopted a mixed methods approach to data collection. A comprehensive review of the literature was conducted to identify relevant state, national and international literature. Both qualitative and quantitative methodologies were used to collect data from a range of key stakeholders.
Resumo:
Based on the eigen crack opening displacement (COD) boundary integral equations, a newly developed computational approach is proposed for the analysis of multiple crack problems. The eigen COD particularly refers to a crack in an infinite domain under fictitious traction acting on the crack surface. With the concept of eigen COD, the multiple cracks in great number can be solved by using the conventional displacement discontinuity boundary integral equations in an iterative fashion with a small size of system matrix. The interactions among cracks are dealt with by two parts according to the distances of cracks to the current crack. The strong effects of cracks in adjacent group are treated with the aid of the local Eshelby matrix derived from the traction BIEs in discrete form. While the relatively week effects of cracks in far-field group are treated in the iteration procedures. Numerical examples are provided for the stress intensity factors of multiple cracks, up to several thousands in number, with the proposed approach. By comparing with the analytical solutions in the literature as well as solutions of the dual boundary integral equations, the effectiveness and the efficiencies of the proposed approach are verified.
Resumo:
The drawdown of reservoirs can significantly affect the stability of upstream slopes of earth dams. This is due to the removal of the balancing hydraulic forces acting on the dams and the undrained condition within the upstream slope soils. In such scenarios, the stability of the slopes can be influenced by a range of factors including drawdown rates, slope inclination and soil properties. This paper investigates the effects of drawdown rate, saturated hydraulic conductivity and unsaturated shear strength of dam materials on the stability of the upstream slope of an earth dam. In this study, the analysis of pore-water pressure changes within the upstream slope during reservoir drawdown was coupled with the slope stability analysis using the general limit equilibrium method. The results of the analysis suggested that a decrease in the reservoir water level caused the stability of the upstream slope to decrease. The dam embankment constructed with highly permeable soil was found to be more stable during drawdown scenarios, compared to others. Further, lower drawdown rates resulted in a higher safety factor for the upstream slope. Also, the safety factor of the slope calculated using saturated shear strength properties of the dam materials was slightly higher than that calculated using unsaturated shear strength properties. In general, for all the scenarios analysed, the lowest safety factor was found to be at the reservoir water level of about 2/3 of drawdown regime.
Resumo:
Objective: Several new types of contraception became available in Australia over the last twelve years (the implant in 2001, progestogen intra-uterine device (IUD) in 2003, and vaginal contraceptive ring in 2007). Most methods of contraception require access to health services. Permanent sterilisation and the insertion of an implant or IUD involve a surgical procedure. Access to health professionals providing these specialised services may be more difficult in rural areas. This paper examines uptake of permanent or long-acting reversible contraception (LARCs) among Australian women in rural areas compared to women in urban areas. Method: Participants in the Australian Longitudinal Study on Women's Health born in 1973-78 reported on their contraceptive use at three surveys: 2003, 2006 and 2009. Contraceptive methods included permanent sterilisation (tubal ligation, vasectomy), non-daily or LARC methods (implant, IUD, injection, vaginal ring), and other methods including daily, barrier or "natural" methods (oral contraceptive pills, condoms, withdrawal, safe period). Sociodemographic, reproductive history and health service use factors associated with using permanent, LARC or other methods were examined using a multivariable logistic regression analysis. Results: Of 9,081 women aged 25-30 in 2003, 3% used permanent methods and 4% used LARCs. Six years later in 2009, of 8,200 women (aged 31-36), 11% used permanent methods and 9% used LARCs. The fully adjusted parsimonious regression model showed that the likelihood of a woman using LARCs and permanent methods increased with number of children. Women whose youngest child was school-age were more likely to use LARCs (OR=1.83, 95%CI 1.43-2.33) or permanent methods (OR=4.39, 95%CI 3.54-5.46) compared to women with pre-school children. Compared to women living in major cities, women in inner regional areas were more likely to use LARCs (OR=1.26, 95%CI 1.03-1.55) or permanent methods (OR=1.43, 95%CI 1.17-1.76). Women living in outer regional and remote areas were more likely than women living in cities to use LARCs (OR=1.65, 95%CI 1.31-2.08) or permanent methods (OR=1.69, 95%CI 1.43-2.14). Women with poorer access to GPs were more likely to use permanent methods (OR=1.27, 95%CI 1.07-1.52). Conclusions: Location of residence and access to health services are important factors in women's choices about long-acting contraception in addition to the number and age of their children. There is a low level of uptake of non-daily, long-acting methods of contraception among Australian women in their mid-thirties.
Resumo:
Objectives: To examine factors associated with the uptake of i) long-acting reversible, ii) permanent and iii) traditional contraceptive methods among Australian women. Methods: Participants in the Australian Longitudinal Study on Women's Health born in 1973–78 reported on their contraceptive use at three surveys: 2003, 2006 and 2009. The participants were 5,849 women aged 25–30 in 2003 randomly sampled from Medicare. The main outcome measure was current contraceptive method at age 28–33 years categorised as long-acting reversible methods (implant, IUD, injection), permanent (tubal ligation, vasectomy), and traditional methods (oral contraceptive pills, condoms, withdrawal, safe period). Results: Compared to women living in major cities, women in inner regional areas were more likely to use long-acting (OR=1.26, 95%CI 1.03–1.55) or permanent methods (OR=1.43, 95%CI 1.17–1.76). Women living in outer regional/remote areas were more likely than women living in cities to use long-acting (OR=1.65, 95%CI 1.31–2.08) or permanent methods (OR=1.69, 95%CI 1.43–2.14). Conclusions: Location of residence is an important factor in women's choices about long-acting and permanent contraception in addition to the number and age of their children. Implications: Further research is needed to understand the role of geographical location in women's access to contraceptive options in Australia.
Resumo:
Background Flavonoids such as anthocyanins, flavonols and proanthocyanidins, play a central role in fruit colour, flavour and health attributes. In peach and nectarine (Prunus persica) these compounds vary during fruit growth and ripening. Flavonoids are produced by a well studied pathway which is transcriptionally regulated by members of the MYB and bHLH transcription factor families. We have isolated nectarine flavonoid regulating genes and examined their expression patterns, which suggests a critical role in the regulation of flavonoid biosynthesis. Results In nectarine, expression of the genes encoding enzymes of the flavonoid pathway correlated with the concentration of proanthocyanidins, which strongly increases at mid-development. In contrast, the only gene which showed a similar pattern to anthocyanin concentration was UDP-glucose-flavonoid-3-O-glucosyltransferase (UFGT), which was high at the beginning and end of fruit growth, remaining low during the other developmental stages. Expression of flavonol synthase (FLS1) correlated with flavonol levels, both temporally and in a tissue specific manner. The pattern of UFGT gene expression may be explained by the involvement of different transcription factors, which up-regulate flavonoid biosynthesis (MYB10, MYB123, and bHLH3), or repress (MYB111 and MYB16) the transcription of the biosynthetic genes. The expression of a potential proanthocyanidin-regulating transcription factor, MYBPA1, corresponded with proanthocyanidin levels. Functional assays of these transcription factors were used to test the specificity for flavonoid regulation. Conclusions MYB10 positively regulates the promoters of UFGT and dihydroflavonol 4-reductase (DFR) but not leucoanthocyanidin reductase (LAR). In contrast, MYBPA1 trans-activates the promoters of DFR and LAR, but not UFGT. This suggests exclusive roles of anthocyanin regulation by MYB10 and proanthocyanidin regulation by MYBPA1. Further, these transcription factors appeared to be responsive to both developmental and environmental stimuli.