9 resultados para Tobit
em Queensland University of Technology - ePrints Archive
Resumo:
Poor compliance with speed limits is a serious safety concern in work zones. Most studies of work zone speeds have focused on descriptive analyses and statistical testing without systematically capturing the effects of vehicle and traffic characteristics. Consequently, little is known about how the characteristics of surrounding traffic and platoons influence speeds. This paper develops a Tobit regression technique for innovatively modeling the probability and the magnitude of non-compliance with speed limits at various locations in work zones. Speed data is transformed into two groups—continuous for non-compliant and left-censored for compliant drivers—to model in a Tobit model framework. The modeling technique is illustrated using speed data from three long-term highway work zones in Queensland, Australia. Consistent and plausible model estimates across the three work zones support the appropriateness and validity of the technique. The results show that the probability and magnitude of speeding was higher for leaders of platoons with larger front gaps, during late afternoon and early morning, when traffic volumes were higher, and when higher proportions of surrounding vehicles were non-compliant. Light vehicles and their followers were also more likely to speed than others. Speeding was more common and greater in magnitude upstream than in the activity area, with higher compliance rates close to the end of the activity area and close to stop/slow traffic controllers. The modeling technique and results have great potential to assist in deployment of appropriate countermeasures by better identifying the traffic characteristics associated with speeding and the locations of lower compliance.
Resumo:
Farmers' exposure to pesticides is high in developing countries. As a result many farmers suffer from ill-health, both short and long term. Deaths are not uncommon. This paper addresses this issue. Field survey data from Sri Lanka are used to estimate farmers' expenditure on defensive behavior (DE) and to determine factors that influence DE. The avertive behavior approach is used to estimate costs. Tobit regression analysis is used to determine factors that influence DE. Field survey data show that farmers' expenditures on DE are low. This is inversely related to high incidence of ill health among farmers using pesticides.
Resumo:
A substantial body of research is focused on understanding the relationships between socio-demographics, land-use characteristics, and mode specific attributes on travel mode choice and time-use patterns. Residential and commercial densities, inter-mixing of land uses, and route directness in conjunction with transportation performance characteristics interact to influence accessibility to destinations as well as time spent traveling and engaging in activities. This study uniquely examines the activity durations undertaken for out-of-home subsistence; maintenance, and discretionary activities. Also examined are total tour durations (summing all activity categories within a tour). Cross-sectional activities are obtained from household activity travel survey data from the Atlanta Metropolitan Region. Time durations allocated to weekdays and weekends are compared. The censoring and endogeneity between activity categories and within individuals are captured using multiple equations Tobit models. The analysis and modeling reveal that land-use characteristics such as net residential density and the number of commercial parcels within a kilometer of a residence are associated with differences in weekday and weekend time-use allocations. Household type and structure are significant predictors across the three activity categories, but not for overall travel times. Tour characteristics such as time-of-day and primary travel mode of the tours also affect traveler's out-of-home activity-tour time-use patterns.
Resumo:
In order to examine time allocation patterns within household-level trip-chaining, simultaneous doubly-censored Tobit models are applied to model time-use behavior within the context of household activity participation. Using the entire sample and a sub-sample of worker households from Tucson's Household Travel Survey, two sets of models are developed to better understand the phenomena of trip-chaining behavior among five types of households: single non-worker households, single worker households, couple non-worker households, couple one-worker households, and couple two-worker households. Durations of out-of-home subsistence, maintenance, and discretionary activities within trip chains are examined. Factors found to be associated with trip-chaining behavior include intra-household interactions with the household types and their structure and household head attributes.
Resumo:
In this study we propose a virtual index for measuring the relative innovativeness of countries. Using a multistage virtual benchmarking process, the best and rational benchmark is extracted for inefficient ISs. Furthermore, Tobit and Ordinary Least Squares (OLS) regression models are used to investigate the likelihood of changes in inefficiencies by investigating country-specific factors. The empirical results relating to the virtual benchmarking process suggest that the OLS regression model would better explain changes in the performance of innovation- inefficient countries.
Resumo:
Poor compliance with speed limits is a serious safety concern at roadworks. While considerable research has been undertaken worldwide to understand drivers’ speeding behaviour at roadworks and to identify treatments for improving compliance with speed limits, little is known about the speeding behaviour of drivers at Australian roadworks and how their compliance rates with speed limits could be improved. This paper presents findings from two Queensland studies targeted at 1) examining drivers’ speed profiles at three long-term roadwork sites, and 2) understanding the effectiveness of speed control treatments at roadworks. The first study analysed driver speeds at various locations in the sites using a Tobit regression model. Results show that the probability of speeding was higher for light vehicles and their followers, for leaders of platoons with larger front gaps, during late afternoon and early morning, when higher proportions of surrounding vehicles were speeding, and at the upstream of work areas. The second study provided a comprehensive understanding of the effectiveness of various speed control treatments used at roadworks by undertaking a critical review of the literature. Results showed that enforcement has the greatest effects on reducing speeds among all treatments, while the roadwork signage and information-related treatments have small to moderate effects on speed reduction. Findings from the studies have potential for designing programs to effectively improve speed limit compliance at Australian roadworks.
Resumo:
Traffic incidents are recognised as one of the key sources of non-recurrent congestion that often leads to reduction in travel time reliability (TTR), a key metric of roadway performance. A method is proposed here to quantify the impacts of traffic incidents on TTR on freeways. The method uses historical data to establish recurrent speed profiles and identifies non-recurrent congestion based on their negative impacts on speeds. The locations and times of incidents are used to identify incidents among non-recurrent congestion events. Buffer time is employed to measure TTR. Extra buffer time is defined as the extra delay caused by traffic incidents. This reliability measure indicates how much extra travel time is required by travellers to arrive at their destination on time with 95% certainty in the case of an incident, over and above the travel time that would have been required under recurrent conditions. An extra buffer time index (EBTI) is defined as the ratio of extra buffer time to recurrent travel time, with zero being the best case (no delay). A Tobit model is used to identify and quantify factors that affect EBTI using a selected freeway segment in the Southeast Queensland, Australia network. Both fixed and random parameter Tobit specifications are tested. The estimation results reveal that models with random parameters offer a superior statistical fit for all types of incidents, suggesting the presence of unobserved heterogeneity across segments. What factors influence EBTI depends on the type of incident. In addition, changes in TTR as a result of traffic incidents are related to the characteristics of the incidents (multiple vehicles involved, incident duration, major incidents, etc.) and traffic characteristics.
Resumo:
Background Research on the relationship between Health Related Quality of Life (HRQoL) and physical activity (PA), to date, have rarely investigated how this relationship differ across objective and subjective measures of PA. The aim of this paper is to explore the relationship between HRQoL and PA, and examine how this relationship differs across objective and subjective measures of PA, within the context of a large representative national survey from England. Methods Using a sample of 5,537 adults (40–60 years) from a representative national survey in England (Health Survey for England 2008), Tobit regressions with upper censoring was employed to model the association between HRQoL and objective, and subjective measures of PA controlling for potential confounders. We tested the robustness of this relationship across specific types of PA. HRQoL was assessed using the summary measure of health state utility value derived from the EuroQol-5 Dimensions (EQ-5D) whilst PA was assessed via subjective measure (questionnaire) and objective measure (accelerometer- actigraph model GT1M). The actigraph was worn (at the waist) for 7 days (during waking hours) by a randomly selected sub-sample of the HSE 2008 respondents (4,507 adults – 16 plus years), with a valid day constituting 10 hours. Analysis was conducted in 2010. Results Findings suggest that higher levels of PA are associated with better HRQoL (regression coefficient: 0.026 to 0.072). This relationship is consistent across different measures and types of PA although differences in the magnitude of HRQoL benefit associated with objective and subjective (regression coefficient: 0.047) measures of PA are noticeable, with the former measure being associated with a relatively better HRQoL (regression coefficient: 0.072). Conclusion Higher levels of PA are associated with better HRQoL. Using an objective measure of PA compared with subjective shows a relatively better HRQoL.