90 resultados para Time-delayed feedback control
em Queensland University of Technology - ePrints Archive
Resumo:
This paper establishes a practical stability result for discrete-time output feedback control involving mismatch between the exact system to be stabilised and the approximating system used to design the controller. The practical stability is in the sense of an asymptotic bound on the amount of error bias introduced by the model approximation, and is established using local consistency properties of the systems. Importantly, the practical stability established here does not require the approximating system to be of the same model type as the exact system. Examples are presented to illustrate the nature of our practical stability result.
Resumo:
This correspondence paper addresses the problem of output feedback stabilization of control systems in networked environments with quality-of-service (QoS) constraints. The problem is investigated in discrete-time state space using Lyapunov’s stability theory and the linear inequality matrix technique. A new discrete-time modeling approach is developed to describe a networked control system (NCS) with parameter uncertainties and nonideal network QoS. It integrates a network-induced delay, packet dropout, and other network behaviors into a unified framework. With this modeling, an improved stability condition, which is dependent on the lower and upper bounds of the equivalent network-induced delay, is established for the NCS with norm-bounded parameter uncertainties. It is further extended for the output feedback stabilization of the NCS with nonideal QoS. Numerical examples are given to demonstrate the main results of the theoretical development.
Resumo:
This paper addresses an output feedback control problem for a class of networked control systems (NCSs) with a stochastic communication protocol. Under the scenario that only one sensor is allowed to obtain the communication access at each transmission instant, a stochastic communication protocol is first defined, where the communication access is modelled by a discrete-time Markov chain with partly unknown transition probabilities. Secondly, by use of a network-based output feedback control strategy and a time-delay division method, the closed-loop system is modeled as a stochastic system with multi time-varying delays, where the inherent characteristic of the network delay is well considered to improve the control performance. Then, based on the above constructed stochastic model, two sufficient conditions are derived for ensuring the mean-square stability and stabilization of the system under consideration. Finally, two examples are given to show the effectiveness of the proposed method.
Resumo:
In this note, we present a method to characterize the degradation in performance that arises in linear systems due to constraints imposed on the magnitude of the control signal to avoid saturation effects. We do this in the context of cheap control for tracking step signals.
Resumo:
The paper presents a detailed analysis on the collective dynamics and delayed state feedback control of a three-dimensional delayed small-world network. The trivial equilibrium of the model is first investigated, showing that the uncontrolled model exhibits complicated unbounded behavior. Then three control strategies, namely a position feedback control, a velocity feedback control, and a hybrid control combined velocity with acceleration feedback, are then introduced to stabilize this unstable system. It is shown in these three control schemes that only the hybrid control can easily stabilize the 3-D network system. And with properly chosen delay and gain in the delayed feedback path, the hybrid controlled model may have stable equilibrium, or periodic solutions resulting from the Hopf bifurcation, or complex stranger attractor from the period-doubling bifurcation. Moreover, the direction of Hopf bifurcation and stability of the bifurcation periodic solutions are analyzed. The results are further extended to any "d" dimensional network. It shows that to stabilize a "d" dimensional delayed small-world network, at least a "d – 1" order completed differential feedback is needed. This work provides a constructive suggestion for the high dimensional delayed systems.
Resumo:
Based on Newmark-β method, a structural vibration response is predicted. Through finding the appropriate control force parameters within certain ranges to optimize the objective function, the predictive control of the structural vibration is achieved. At the same time, the numerical simulation analysis of a two-storey frame structure with magneto-rheological (MR) dampers under earthquake records is carried out, and the parameter influence on structural vibration reduction is discussed. The results demonstrate that the semi-active control based on Newmark-β predictive algorithm is better than the classical control strategy based on full-state feedback control and has remarkable advantages of structural vibration reduction and control robustness.
Resumo:
This paper describes a walking gait for a humanoid robot with a distributed control system. The motion for the robot is calculated in real time on a central controller, and sent over CAN bus to the distributed control system. The distributed control system loosely follows the motion patterns from the central controller, while also acting to maintain stability and balance. There is no global feedback control system; the system maintains its balance by the interaction between central gait and soft control of the actuators. The paper illustrates a straight line walking gait and shows the interaction between gait generation and the control system. The analysis of the data shows that successful walking can be achieved without maintaining strict local joint control, and without explicit global balance coordination.
Resumo:
Real-time networked control systems (NCSs) over data networks are being increasingly implemented on a massive scale in industrial applications. Along with this trend, wireless network technologies have been promoted for modern wireless NCSs (WNCSs). However, popular wireless network standards such as IEEE 802.11/15/16 are not designed for real-time communications. Key issues in real-time applications include limited transmission reliability and poor transmission delay performance. Considering the unique features of real-time control systems, this paper develops a conditional retransmission enabled transport protocol (CRETP) to improve the delay performance of the transmission control protocol (TCP) and also the reliability performance of the user datagram protocol (UDP) and its variants. Key features of the CRETP include a connectionless mechanism with acknowledgement (ACK), conditional retransmission and detection of ineffective data packets on the receiver side.
Resumo:
Train delay is one of the most important indexes to evaluate the service quality of the railway. Because of the interactions of movement among trains, a delayed train may conflict with trains scheduled on other lines at junction area. Train that loses conflict may be forced to stop or slow down because of restrictive signals, which consequently leads to the loss of run-time and probably enlarges more delays. This paper proposes a time-saving train control method to recover delays as soon as possible. In the proposed method, golden section search is adopted to identify the optimal train speed at the expected time of restrictive signal aspect upgrades, which enables the train to depart from the conflicting area as soon as possible. A heuristic method is then developed to attain the advisory train speed profile assisting drivers in train control. Simulation study indicates that the proposed method enables the train to recover delays as soon as possible in case of disturbances at railway junctions, in comparison with the traditional maximum traction strategy and the green wave strategy.
Resumo:
This paper considers the pros and cons of using Behavioural cloning for the development of low-level helicopter automation modules. Over the course of this project several Behavioural cloning approaches have been investigated. The results of the most effective Behavioural cloning approach are then compared to PID modules designed for the same aircraft. The comparison takes into consideration development time, reliability, and control performance. It has been found that Behavioural cloning techniques employing local approximators and a wide state-space coverage during training can produce stabilising control modules in less time than tuning PID controllers. However, performance and reliabity deficits have been found to exist with the Behavioural Cloning, attributable largely to the time variant nature of the dynamics due to the operating environment, and the pilot actions being poor for teaching. The final conclusion drawn here is that tuning PID modules remains superior to behavioural cloning for low-level helicopter automation.
Resumo:
The GuRoo is a 1.2 m tall, 23 degree of freedom humanoid constructed at the University of Queensland for research into humanoid robotics. The key challenge being addressed by the GuRoo project is the development of appropriate learning strategies for control and coordination of the robot's many joints. The development of learning strategies is seen as a way to side-step the inherent intricacy of modeling a multi-DOF biped robot. This paper outlines the approach taken to generate an appropriate control scheme for the joints of the GuRoo. The paper demonstrates the determination of local feedback control parameters using a genetic algorithm. The feedback loop is then augmented by a predictive modulator that learns a form of feed-forward control to overcome the irregular loads experienced at each joint during the gait cycle. The predictive modulator is based on the CMAC architecture. Results from tests on the GuRoo platform show that both systems provide improvements in stability and tracking of joint control.
Resumo:
The joints of a humanoid robot experience disturbances of markedly different magnitudes during the course of a walking gait. Consequently, simple feedback control techniques poorly track desired joint trajectories. This paper explores the addition of a control system inspired by the architecture of the cerebellum to improve system response. This system learns to compensate the changes in load that occur during a cycle of motion. The joint compensation scheme, called Trajectory Error Learning, augments the existing feedback control loop on a humanoid robot. The results from tests on the GuRoo platform show an improvement in system response for the system when augmented with the cerebellar compensator.
Resumo:
Various load compensation schemes proposed in literature assume that voltage source at point of common coupling (PCC) is stiff. In practice, however, the load is remote from a distribution substation and is supplied by a feeder. In the presence of feeder impedance, the PWM inverter switchings distort both the PCC voltage and the source currents. In this paper load compensation with such a non-stiff source is considered. A switching control of the voltage source inverter (VSI) based on state feedback is used for load compensation with non-stiff source. The design of the state feedback controller requires careful considerations in choosing a gain matrix and in the generation of reference quantities. These aspects are considered in this paper. Detailed simulation and experimental results are given to support the control design.