51 resultados para Textiles mapuche
em Queensland University of Technology - ePrints Archive
Resumo:
Research methodology in the discipline of Art & Design has been a topic for much debate in the academic community. The result of such avid and ongoing discussion appears to be a disciplinary obsession with research methodologies and a culture of adopting and adapting existing methodologies from more established disciplines. This has eventuated as a means of coping with academic criticism and as an attempt to elevate Art & Design to a ‘real academic status’. Whilst this adoption has had some effect in tempering the opinion of Art & Design research from more ‘serious’ academics the practice may be concealing a deeper problem for this discipline. Namely, that knowledge transfer within creative practice, particularly in fashion textiles design practice, is largely tacit in nature and not best suited to dissemination through traditional means of academic writing and publication. ----- ----- There is an opportunity to shift the academic debate away from appropriate (or inappropriate) use of methodologies and theories to demonstrate the existence (or absence) of rigor in creative practice research. In particular, the changing paradigms for the definitions of research to support new models for research quality assessment (such as the RAE in the United Kingdom and ERA in Australia) require a re-examination of the traditions of academic writing and publication in relation to this form of research. It is now appropriate to test the limits of tacit knowledge. It has been almost half a century since Michael Polanyi wrote “we know more than we can tell” (Polanyi, 1967 p.4) at a time when the only means of ‘telling’ was through academic writing and publishing in hardcopy format. ----- ----- This paper examines the academic debate surrounding research methodologies for fashion textiles design through auto-ethnographic case study and object analysis. The author argues that, while this debate is interesting, the focus should be to ask: are there more effective ways for creative practitioner researchers to disseminate their research? The aim of this research is to examine the possibilities of developing different, more effective methods of ‘telling’ to support the transfer of tacit knowledge inherent in the discipline of Fashion Textiles Design.
Resumo:
A key concern in the field of contemporary fashion/textiles design is the emergence of ‘fast fashion’: best explained as "buy it Friday, wear it Saturday and throw it away on Sunday" (O'Loughlin, 2007). In this contemporary retail atmosphere of “pile it high: sell it cheap” and “quick to market”, even designer goods have achieved a throwaway status. This modern culture of consumerism is the antithesis of sustainability and is proving a dilemma surrounding sustainable practice for designers and producers in the disciplines (de Blas, 2010). Design researchers including those in textiles/fashion have begun to explore what is a key question in the 21st century in order to create a vision and reason for their disciplines: Can products be designed to have added value to the consumer and hence contribute to a more sustainable industry? Fashion Textiles Design has much to answer for in contributing to the problems of unsustainable practices on a global scale in design, production and waste. However, designers within this field also have great potential to contribute to practical ‘real world’ solutions. ----- ----- This paper provides an overview of some of the design and technological developments from the fashion/textiles industry, endorsing a model where designers and technicians use their transferrable skills for wellbeing rather than desire. Smart materials in the form of responsive and adaptive fibres and fabrics combined with electro active devices, and ICT are increasingly shaping many aspects of society particularly in the leisure industry and interactive consumer products are ever more visible in healthcare. Combinations of biocompatible delivery devices with bio sensing elements can create analyse, sense and actuate early warning and monitoring systems which can be linked to data logging and patient records via intelligent networks. Patient sympathetic, ‘smart’ fashion/textiles applications based on interdisciplinary expertise utilising textiles design and technology is emerging. An analysis of a series of case studies demonstrates the potential of fashion textiles design practitioners to exploit the concept of value adding through technological garment and textiles applications and enhancement for health and wellbeing and in doing so contribute to a more sustainable future fashion/textiles design industry.
Resumo:
This article provides a discussion about how new technologies will enable Fashion Textiles Research to be disseminated amongst a new generation of producers and consumers via interactive and web technologies. How appropriate are these methods for Fashion Textiles Research? What are the advantages of these mediums and what will this mean for researchers, producers and consumers now and in the future, as the traditional platforms such as Journal Papers and Conferences, become obsolete? Can we predict the future of communicating textile research by assessing the way in which research is being conducted with the use of electronic databases, the Internet and with the emergence of electronic journals?
Resumo:
In this present work attempts have been made to study the glass transition temperature of alternative mould materials by using both microwave heating and conventional oven heating. In this present work three epoxy resins, namely R2512, R2515 and R2516, which are commonly used for making injection moulds have been used in combination with two hardeners H2403 and H2409. The magnetron microwave generator used in this research is operating at a frequency of 2.45 GHz with a hollow rectangular waveguide. In order to distinguish the effects between the microwave and conventional heating, a number of experiments were performed to test their mechanical properties such as tensile and flexural strengths. Additionally, differential scanning calorimeter technique was implemented to measure the glass transition temperature on both microwave and conventional heating. This study provided necessary evidences to establish that microwave heated mould materials resulted with higher glass transition temperature than the conventional heating. Finally, attempts were also made to study the microstructure of microwave-cured materials by using a scanning electron microscope in order to analyze the morphology of cured specimens.
Resumo:
In Step was a wearable artwork consisting of a pair of embroidered foot bandages and an actuator ‘cushion’ embedded with 15 electromechanical actuator pistons. The bandage was embedded with woven, soft and flexible fabric sensors - interconnected with metallic connecting threads, fasteners and a wireless interface (in a final form). When wrapped around a foot and lower leg the sensors sat on the ball of the toes and heel. This ‘wearable interface’ was then connected wirelessly to a soft sculptural form, which employed actuators to tap gently in response to the qualities of the walk detected by the soft sensors. In this way the ‘tread qualities’ of the walker could then be felt by someone else holding this device against their stomach – thereby allowing pairs of participants to ‘feel’ the tactile qualities of the other's walk. The work was presented both as a working object and via a short videorecorded performance.----- In Step generated innovative new approaches to interface and sensor embedded clothing/footware whilst also creating an evocative vehicle to comment upon contemporary Post Colonial theories of weight and groundedness – particularly the psycho-geographical ‘separation’ from the landscape that inspired Paul Carter’s “environmentally grounded poetics”. The work’s final form also suggested critical new directions for responsive clothing and footwear for the emerging genre of smart textiles.
Resumo:
Recently, unlike conventional method in supplying shielding gas, a newly method which alternately supplies different kinds of shielding gases in weld zone is developed and partly commercialized. However, literature related to the present status of the technology in the actual weld field is very scant. To give better understand on this technology, this study was performed. Compared with conventional gas supply method, the variations of weld porosity and weld shape in aluminum welding with alternate supply method of pure argon and pure helium were compared with conventional gas supply method with pure argon and argon + 67%helium mixture, respectively. As a result, compared with the welding by supplying pure argon and argon + 67%helium mixture by conventional method, the welding by supplying alternately pure argon and pure helium, produced lower degree of weld porosity and deeper and broader weld penetration profile.
Resumo:
In truck manufacturing, the exhaust and air inlet pipes are specialized equipment that requires highly skilled, heavy machinery and small batch production methods. This paper describes a project to develop the computer numerically controlled (CNC) pipe bending process for a truck component manufacturer. The company supplies a huge range of heavy duty truck parts to the domestic market and is a significant supplier in Australia. The company has been using traditional methods of machine assisted manual pipe bending techniques. In a drive of continuous improvement, the company has acquired a pre-owned CNC bending machine capable of bending pipes automatically up to 25 bends. However, due to process mismatch, this machine is only used for single bending operation. The researchers studied the bending system and changed the manufacturing process. Using an example exhaust pipe as the benchmark, a significant drop of manufacturing lead time from 70 minutes to 40 minutes for each pipe was demonstrated. There was also a decrease of material cost due to the multiple bends part in one piece without cutting excessive materials for each single bend like it used to be.
Resumo:
Mechanical harmonic transmissions are relatively new kind of drives having several unusual features. For example, they can provide reduction ratio up to 500:1 in one stage, have very small teeth module compared to conventional drives and very large number of teeth (up to 1000) on a flexible gear. If for conventional drives manufacturing methods are well-developed, fabrication of large size harmonic drives presents a challenge. For example, how to fabricate a thin shell of 1.7m in diameter and wall thickness of 30mm having high precision external teeth at one end and internal splines at the other end? It is so flexible that conventional fabrication methods become unsuitable. In this paper special fabrication methods are discussed that can be used for manufacturing of large size harmonic drive components. They include electro-slag welding and refining, the use of special expandable devices to locate and hold a flexible gear, welding peripheral parts of disks with wear resistant materials with subsequent machining and others. These fabrication methods proved to be effective and harmonic drives built with the use of these innovative technologies have been installed on heavy metallurgical equipment and successfully tested.