93 resultados para Textile absorbent
em Queensland University of Technology - ePrints Archive
Resumo:
Is there a role for prototyping (sketching, pattern making and sampling) in addressing real world problems of sustainability (People, Profit, and Planet), in this case social/healthcare issues, through fashion and textiles research? Skin cancer and related illnesses are a major cause of disfigurement and death in New Zealand and Australia where the rates of Melanoma, a serious form of skin cancer, are four times higher than in the Northern Hemisphere regions of USA, UK and Canada (IARC, 1992). In 2007, AUT University (Auckland University of Technology) Fashion Department and the Health Promotion Department of Cancer Society - Auckland Division (CSA) developed a prototype hat aimed at exploring a barrier type solution to prevent facial and neck skin damage. This is a paradigm shift from the usual medical research model. This paper provides an overview of the project and examines how a fashion prototype has been used to communicate emergent social, environmental, personal, physiological and technological concerns to the trans-disciplinary research team. The authors consider how the design of a product can enhance and support sustainable design practice while contributing a potential solution to an ongoing health issue. Analysis of this case study provides an insight into prototyping in fashion and textiles design, user engagement and the importance of requirements analysis in relation to sustainable development. The analysis and a successful outcome of the final prototype have provided a gateway to future collaborative research and product development.
Resumo:
Today, polarisation of the fashion textile industry has already begun as smart, intelligent and conscientious fashion emerges as a backlash to the experience of choice fatigue, poor quality, dumb design and greenwash. But the process, development and manufacture of fashion textiles is complex. And the demand, both customer and industry driven, for new integrated product policies,2 designed to minimise environmental impacts by looking at all phases of a product's life cycle, is problematic due to complexity and a lack of networking tools. This article explores these issues through the construct of the department store of the future.
Resumo:
Supply chain outsourcing has posed problems for conventional labour regulation, which focuses on employers contracting directly with workers, particularly employees. These difficulties have been exacerbated by the traditional trifurcated approach to regulation of pay and conditions, work health and safety and workers’ compensation. This paper analyses the parallel interaction of two legal developments within the Australian textile, clothing and footwear industry. The first is mandatory contractual tracking mechanisms within state and federal labour laws and the second is the duties imposed by the harmonised Work Health and Safety Acts. Their combined effect has created an innovative, fully enforceable and integrated regulatory framework for the textile, clothing and footwear industry and, it is argued, other supply chains in different industry contexts. This paper highlights how regulatory solutions can address adverse issues for workers at the bottom of contractual networks, such as fissured workplaces and capital fragmentation, by enabling regulators to harness the commercial power of business controllers at the apex to ensure compliance throughout the entire chain.
Resumo:
Textile waste is a significant contributor to landfill yet the majority of textiles can be recycled, allowing for the energy and fibre to be reclaimed. This chapter examines the open-loop and closed loop recycling of textile products with particular reference to the fashion and apparel context. It describes the fibres used within apparel, the current mechanical and chemical methods for textile recycling, LCA findings for each method, and applications within apparel for each. Barriers for more effective recycling include ease of integration into existing textile and apparel design methods as well as coordinated collection of post-consumer waste. The chapter concludes with a discussion of innovations that point to future trends in both open-loop and closed-loop recycling within the apparel industry.
Resumo:
This work reports on the fabrication of a superhydrophobic nylon textile based on the organic charge transfer complex CuTCNAQ (TCNAQ = 11,11,12,12-tetracyanoanthraquinodimethane). The nylon fabric that is metallized with copper undergoes a spontaneous chemical reaction with TCNAQ dissolved in acetonitrile to form nanorods of CuTCNAQ that are intertwined over the entire surface of the fabric. This creates the necessary micro and nanoscale roughness that is required for the Cassie-Baxter state thereby achieving a superhydrophobic/superoleophilic surface without the need for a fluorinated surface. The material is characterised with SEM, FT-IR and XPS spectroscopy and investigated for its ability to separate oil and water in two modes, namely under gravity and as an absorbent. It is found that the fabric can separate dichloromethane, olive oil and crude oil from water and in fact reduce the water content of the oil during the separation process. The fabric is reusable and tolerant to conditions such as seawater, hydrochloric acid and extensive time periods on the shelf. Given that CuTCNAQ is a copper based semiconductor may also open up the possibility of other applications in areas such as photocatalysis and antibacterial applications.
Resumo:
Joining any new community involves transition and adaptation. Just as we learn to adapt to different cultures when we choose to live abroad, so students learn the language and culture of an academic community in order to succeed within that environment. At the same time however, students bring with them individual learning styles and expectations, influenced by their prior experiences of learning and of life more generally. Some have excelled at school; others have come to fashion seeking something in which to excel for the first time. Commencing a degree in fashion design brings students into contact with peers and lecturers who share their passion, providing them with a community of practice which can be both supportive and at the same time intimidating.----- In Queensland where university level study in fashion is such a new phenomenon, few applicants have any depth of training in design when they apply to study fashion. Unlike disciplines such as Dance or Visual Art, where lecturers can expect a good level of skill upon entry to a degree program, we have to look for the potential evidenced in an applicant’s portfolio, much of which is untutored work that they have generated themselves in preparation for application. This means that many first year fashion students at QUT whilst very passionate about the idea of fashion design are often very naïve about the practice of fashion design, with limited knowledge of the history or cultural context of fashion and few of the technical skills needed to translate their ideas into three dimensional products.----- For teachers engaging with first year students in the design studios, it is critical to be cognizant of this mix of different experiences, expectations and emotions in order to design curricula and assessment that stretch and engage students without unduly increasing their sense of frustration and anxiety. This paper examines a first year project designed to provide an introduction to design process and to learning within a creative discipline. The lessons learnt provide a valuable and transferable resource for lecturers in a variety of art and design disciplines.
Resumo:
Neo-Dandy was a practice-led research project that explored histories of a quintessential men’s and womenswear garment from across the ages — the formal white dress shirt. The aim was to generate a body of radically new mens’ shirts that, whilst incorporating characteristics normally associated with womenswear, would remain acceptable to male wearers. A detailed study identified a broad spectrum of historical design approaches, ranging from the orthodox man’s shirt to the many variations of the women’s blouse. Within this spectrum a threshold was discovered where the men’s shirt morphed into the woman’s blouse — a ‘design moment’ that appeared to typify the dandy figure (a fashion character who subversively confronts dress norms of their day). The research analysed thousands of archive catwalk images from leading contemporary menswear designers, and of these, only a small number tampered appreciably with the men’s white dress shirt — suggesting a new realm of possibility for fashion design innovation. This led to the creation of a new body of work labelled ‘Neo-Dandy’. Sixty ‘concept shirts’ were produced, with differing styles and varying degrees of detailing, that fitted the brief of being acceptable to male wearers, eminently ‘wearable’ and on a threshold position between menswear and womenswear. These designs were each tested, documented, and assessed in their capacity to evolve the Neo-Dandy aesthetic. Based on these outcomes, a list of key design principles for achieving this aesthetic was identified to assist designers in further evolving this style. The creative work achieved substantial public acclaim with the ‘Neo Dandy Collection’ winning a prestigious Design Institute of Australia Award (Lifestyle category) and being one of four finalists in the prestigious overall field for design excellence. It was subsequently curated into three major Brisbane exhibitions — the ARC Biennial, at Artisan Gallery and the industry leader, the Mercedes Benz Fashion Festival. The collection was also exhibited at the Queensland Art Gallery.
Resumo:
Neo-Dandy was a practice-led research project that explored histories of a quintessential men’s and womenswear garment from across the ages — the formal white dress shirt. The aim was to generate a body of radically new mens’ shirts that incorporated characteristics normally associated with womenswear, whist remaining acceptable to male wearers. A detailed study identified a broad spectrum of historical design approaches, ranging from the orthodox man’s shirt to the many variations of the women’s blouse. Within this spectrum a threshold was discovered where the men’s shirt morphed into the woman’s blouse — a ‘design moment’ that appeared to typify the dandy figure (a fashion character who subversively confronts dress norms of their day). The research analysed thousands of archive catwalk images from leading contemporary menswear designers, and of these, only a small number tampered appreciably with the men’s white dress shirt — suggesting a new realm of possibility for fashion design innovation. This led to the creation of a new body of work labelled ‘Neo-Dandy’. Sixty ‘concept shirts’ were produced, with differing styles and varying degrees of detailing, that fitted the brief of being acceptable to male wearers, eminently ‘wearable’ and on a threshold position between menswear and womenswear. These designs were each tested, documented, and assessed in their capacity to evolve the Neo-Dandy aesthetic. Based on these outcomes, a list of key design principles for achieving this aesthetic was identified to assist designers in further evolving this style. The creative work achieved substantial public acclaim with the ‘Neo Dandy Collection’ winning a prestigious Design Institute of Australia Award (Lifestyle category) and being one of four finalists in the prestigious overall field for design excellence. It was subsequently curated into three major Brisbane exhibitions — the ARC Biennial, at Artisan Gallery and the industry leader, the Mercedes Benz Fashion Festival. The collection was also exhibited at the Queensland Art Gallery.
Resumo:
In the late 1990s New Zealand fashion gained some international recognition for its dark edginess and intellectual connection due to its colonial past (Molloy, 2004). In the years since, this momentum seems to have dissipated as local fashion companies have followed a global trend towards inexpensive off shore manufacturing. The transfer of the making of garments to overseas workers appears to have resulted in a local fashion scene where many garments look the same in style, colour, cut and fit. The excitement of the past, where the majority of fashion designers established their own individuality through the cut and shape of the garments that they produced, may have been inadvertently lost. Consequently a sustainable New Zealand fashion and manufacturing industry, with design integrity, seems further out of reach. The first question posed by this research project is, ‘can the design and manufacture of a fashion garment, bearing in mind certain economic and practical restrictions at its inception, result in the development of a distinctive ‘look’ or ‘handwriting’?’ Second, through development of a collection of prototypes, can potential garments be created to be sustainably manufactured in New Zealand?
Resumo:
Transition metal oxides are functional materials that have advanced applications in many areas, because of their diverse properties (optical, electrical, magnetic, etc.), hardness, thermal stability and chemical resistance. Novel applications of the nanostructures of these oxides are attracting significant interest as new synthesis methods are developed and new structures are reported. Hydrothermal synthesis is an effective process to prepare various delicate structures of metal oxides on the scales from a few to tens of nanometres, specifically, the highly dispersed intermediate structures which are hardly obtained through pyro-synthesis. In this thesis, a range of new metal oxide (stable and metastable titanate, niobate) nanostructures, namely nanotubes and nanofibres, were synthesised via a hydrothermal process. Further structure modifications were conducted and potential applications in catalysis, photocatalysis, adsorption and construction of ceramic membrane were studied. The morphology evolution during the hydrothermal reaction between Nb2O5 particles and concentrated NaOH was monitored. The study demonstrates that by optimising the reaction parameters (temperature, amount of reactants), one can obtain a variety of nanostructured solids, from intermediate phases niobate bars and fibres to the stable phase cubes. Trititanate (Na2Ti3O7) nanofibres and nanotubes were obtained by the hydrothermal reaction between TiO2 powders or a titanium compound (e.g. TiOSO4·xH2O) and concentrated NaOH solution by controlling the reaction temperature and NaOH concentration. The trititanate possesses a layered structure, and the Na ions that exist between the negative charged titanate layers are exchangeable with other metal ions or H+ ions. The ion-exchange has crucial influence on the phase transition of the exchanged products. The exchange of the sodium ions in the titanate with H+ ions yields protonated titanate (H-titanate) and subsequent phase transformation of the H-titanate enable various TiO2 structures with retained morphology. H-titanate, either nanofibres or tubes, can be converted to pure TiO2(B), pure anatase, mixed TiO2(B) and anatase phases by controlled calcination and by a two-step process of acid-treatment and subsequent calcination. While the controlled calcination of the sodium titanate yield new titanate structures (metastable titanate with formula Na1.5H0.5Ti3O7, with retained fibril morphology) that can be used for removal of radioactive ions and heavy metal ions from water. The structures and morphologies of the metal oxides were characterised by advanced techniques. Titania nanofibres of mixed anatase and TiO2(B) phases, pure anatase and pure TiO2(B) were obtained by calcining H-titanate nanofibres at different temperatures between 300 and 700 °C. The fibril morphology was retained after calcination, which is suitable for transmission electron microscopy (TEM) analysis. It has been found by TEM analysis that in mixed-phase structure the interfaces between anatase and TiO2(B) phases are not random contacts between the engaged crystals of the two phases, but form from the well matched lattice planes of the two phases. For instance, (101) planes in anatase and (101) planes of TiO2(B) are similar in d spaces (~0.18 nm), and they join together to form a stable interface. The interfaces between the two phases act as an one-way valve that permit the transfer of photogenerated charge from anatase to TiO2(B). This reduces the recombination of photogenerated electrons and holes in anatase, enhancing the activity for photocatalytic oxidation. Therefore, the mixed-phase nanofibres exhibited higher photocatalytic activity for degradation of sulforhodamine B (SRB) dye under ultraviolet (UV) light than the nanofibres of either pure phase alone, or the mechanical mixtures (which have no interfaces) of the two pure phase nanofibres with a similar phase composition. This verifies the theory that the difference between the conduction band edges of the two phases may result in charge transfer from one phase to the other, which results in effectively the photogenerated charge separation and thus facilitates the redox reaction involving these charges. Such an interface structure facilitates charge transfer crossing the interfaces. The knowledge acquired in this study is important not only for design of efficient TiO2 photocatalysts but also for understanding the photocatalysis process. Moreover, the fibril titania photocatalysts are of great advantage when they are separated from a liquid for reuse by filtration, sedimentation, or centrifugation, compared to nanoparticles of the same scale. The surface structure of TiO2 also plays a significant role in catalysis and photocatalysis. Four types of large surface area TiO2 nanotubes with different phase compositions (labelled as NTA, NTBA, NTMA and NTM) were synthesised from calcination and acid treatment of the H-titanate nanotubes. Using the in situ FTIR emission spectrescopy (IES), desorption and re-adsorption process of surface OH-groups on oxide surface can be trailed. In this work, the surface OH-group regeneration ability of the TiO2 nanotubes was investigated. The ability of the four samples distinctively different, having the order: NTA > NTBA > NTMA > NTM. The same order was observed for the catalytic when the samples served as photocatalysts for the decomposition of synthetic dye SRB under UV light, as the supports of gold (Au) catalysts (where gold particles were loaded by a colloid-based method) for photodecomposition of formaldehyde under visible light and for catalytic oxidation of CO at low temperatures. Therefore, the ability of TiO2 nanotubes to generate surface OH-groups is an indicator of the catalytic activity. The reason behind the correlation is that the oxygen vacancies at bridging O2- sites of TiO2 surface can generate surface OH-groups and these groups facilitate adsorption and activation of O2 molecules, which is the key step of the oxidation reactions. The structure of the oxygen vacancies at bridging O2- sites is proposed. Also a new mechanism for the photocatalytic formaldehyde decomposition with the Au-TiO2 catalysts is proposed: The visible light absorbed by the gold nanoparticles, due to surface plasmon resonance effect, induces transition of the 6sp electrons of gold to high energy levels. These energetic electrons can migrate to the conduction band of TiO2 and are seized by oxygen molecules. Meanwhile, the gold nanoparticles capture electrons from the formaldehyde molecules adsorbed on them because of gold’s high electronegativity. O2 adsorbed on the TiO2 supports surface are the major electron acceptor. The more O2 adsorbed, the higher the oxidation activity of the photocatalyst will exhibit. The last part of this thesis demonstrates two innovative applications of the titanate nanostructures. Firstly, trititanate and metastable titanate (Na1.5H0.5Ti3O7) nanofibres are used as intelligent absorbents for removal of radioactive cations and heavy metal ions, utilizing the properties of the ion exchange ability, deformable layered structure, and fibril morphology. Environmental contamination with radioactive ions and heavy metal ions can cause a serious threat to the health of a large part of the population. Treatment of the wastes is needed to produce a waste product suitable for long-term storage and disposal. The ion-exchange ability of layered titanate structure permitted adsorption of bivalence toxic cations (Sr2+, Ra2+, Pb2+) from aqueous solution. More importantly, the adsorption is irreversible, due to the deformation of the structure induced by the strong interaction between the adsorbed bivalent cations and negatively charged TiO6 octahedra, and results in permanent entrapment of the toxic bivalent cations in the fibres so that the toxic ions can be safely deposited. Compared to conventional clay and zeolite sorbents, the fibril absorbents are of great advantage as they can be readily dispersed into and separated from a liquid. Secondly, new generation membranes were constructed by using large titanate and small ã-alumina nanofibres as intermediate and top layers, respectively, on a porous alumina substrate via a spin-coating process. Compared to conventional ceramic membranes constructed by spherical particles, the ceramic membrane constructed by the fibres permits high flux because of the large porosity of their separation layers. The voids in the separation layer determine the selectivity and flux of a separation membrane. When the sizes of the voids are similar (which means a similar selectivity of the separation layer), the flux passing through the membrane increases with the volume of the voids which are filtration passages. For the ideal and simplest texture, a mesh constructed with the nanofibres 10 nm thick and having a uniform pore size of 60 nm, the porosity is greater than 73.5 %. In contrast, the porosity of the separation layer that possesses the same pore size but is constructed with metal oxide spherical particles, as in conventional ceramic membranes, is 36% or less. The membrane constructed by titanate nanofibres and a layer of randomly oriented alumina nanofibres was able to filter out 96.8% of latex spheres of 60 nm size, while maintaining a high flux rate between 600 and 900 Lm–2 h–1, more than 15 times higher than the conventional membrane reported in the most recent study.
Resumo:
This article explores the historical symbolic meanings of gloves.
Resumo:
This paper attempts to address some fundamental issues faced by new and emerging researchers in the discipline of Fashion design. A culture of patchwork research methodology appears to have become the norm in an attempt to ‘fit’ fashion design research into an academic paradigm for the examination of readers from more traditional research fields such as Arts, Humanities, Science and Philosophy. Two key questions are discussed here; is it appropriate for fashion researchers to adopt and adapt existing research methodologies to find a scholarly, academic voice? Secondly; do these methodologies enable fashion design research to be effectively disseminated to professionals and fellow researchers within the discipline of fashion design?