127 resultados para Teenagers - Sexually transmitted diseases
em Queensland University of Technology - ePrints Archive
Resumo:
Background. We investigated the likely impact of vaccines on the prevalence of and morbidity due to Chlamydia trachomatis (chlamydia) infections in heterosexual populations. Methods.An individual‐based mathematical model of chlamydia transmission was developed and linked to the infection course in chlamydia‐infected individuals. The model describes the impact of a vaccine through its effect on the chlamydial load required to infect susceptible individuals (the “critical load”), the load in infected individuals, and their subsequent infectiousness. The model was calibrated using behavioral, biological, and clinical data. Results.A fully protective chlamydia vaccine administered before sexual debut can theoretically eliminate chlamydia epidemics within 20 years. Partially effective vaccines can still greatly reduce the incidence of chlamydia infection. Vaccines should aim primarily to increase the critical load in susceptible individuals and secondarily to decrease the peak load and/or the duration of infection in vaccinated individuals who become infected. Vaccinating both sexes has a beneficial impact on chlamydia‐related morbidity, but targeting women is more effective than targeting men. Conclusions.Our findings can be used in laboratory settings to evaluate vaccine candidates in animal models, by regulatory bodies in the promotion of candidates for clinical trials, and by public health authorities in deciding on optimal intervention strategies.
Resumo:
Chlamydia trachomatis sexually transmitted infection can cause serious reproductive morbidities. This study determined the prevalence of serum IgG response to C. trachomatis putative stress response proteins in females to test for an association with genital tract pathology. There was no significant association of serum IgG to HtrA, Tsp, or RseP with infection or pathology. cHSP60 serum IgG prevalence was significantly associated with infection compared to negative (infertile) controls (p = 0.002), but not with upper genital tract pathology. Serum IgG1-4 antibody subclasses reactive with the antigens was not significantly different between cohorts, although different responses to each antigen were detected.
Resumo:
This longitudinal study examined characteristics of women diagnosed with sexually transmitted infections (STI) for the first time in their later 20s and early 30s. Participants were 6,840 women (born 1973–1978) from the Australian Longitudinal Study on Women’s Health. Women aged 18–23 years were surveyed in 1996 (S1), 2000 (S2), 2003 (S3), and 2006 (S4). There were 269 women reporting an STI for the first time at S3 or S4. Using two multivariable logistic regression analyses (examining 18 predictor variables), these 269 women were compared (1) with 306 women who reported an STI at S2 and (2) with 5,214 women who never reported an STI across the four surveys. Women who reported an STI for the first time at S3 or S4 were less likely to have been pregnant or had a recent Pap smear compared to women reporting an STI at S2.Women reporting a first STI at S3 or S4 were less likely to have been pregnant or had a recent Pap smear compared to women reporting an STI at S2. Women were more likely to report an STI for the first time at S3 or S4 compared to women not reporting an STI at any survey if they were younger, unpartnered, had a higher number of sexual partners, had never been pregnant, were recently divorced or separated, and reported poorer access to Women’s Health or Family Planning Centres at S2. These findings demonstrate the value of longitudinal studies of sexual health over the life course beyond adolescence.
Resumo:
This review examines the multiple levels of pre-existing immunity in the upper and lower female reproductive tract. In addition, we highlight the need for further research of innate and adaptive immune protection of mucosal surfaces in the female reproductive tract. Innate mechanisms include the mucus lining, a tight epithelial barrier and the secretion of antimicrobial peptides and cytokines by epithelial and innate immune cells. Stimulation of the innate immune system also serves to bridge the adaptive arm resulting in the generation of pathogen-specific humoral and cell-mediated immunity. Less understood are the multiple components that act in a coordinated way to provide a network of ongoing protection. Innate and adaptive immunity in the human female reproductive tract are influenced by the stage of menstrual cycle and are directly regulated by the sex steroid hormones, progesterone and estradiol. Furthermore, the effect of hormones on immunity is mediated both directly on immune and epithelial cells and indirectly by stimulating growth factor secretion from stromal cells. The goal of this review is to focus on the diverse aspects of the innate and adaptive immune systems that contribute to a unique network of protection throughout the female reproductive tract.
Resumo:
The immune system in the female reproductive tract (FRT) does not mount an attack against HIV or other sexually transmitted infections (STI) with a single endogenously produced microbicide or with a single arm of the immune system. Instead, the body deploys dozens of innate antimicrobials to the secretions of the female reproductive tract. Working together, these antimicrobials along with mucosal antibodies attack many different viral, bacterial and fungal targets. Within the FRT, the unique challenges of protection against sexually transmitted pathogens coupled with the need to sustain the development of an allogeneic fetus have evolved in such a way that sex hormones precisely regulate immune function to accomplish both tasks. The studies presented in this review demonstrate that estradiol and progesterone secreted during the menstrual cycle act both directly and indirectly on epithelial cells and other immune cells in the reproductive tract to modify immune function in a way that is unique to specific sites throughout the FRT. As presented in this review, studies from our laboratory and others demonstrate that the innate immune response is under hormonal control, varies with the stage of the menstrual cycle, and as such is suppressed at mid-cycle to optimize conditions for successful fertilization and pregnancy. In doing so, a window of STI vulnerability is created during which potential pathogens including HIV enter the reproductive tract to infect host targets.
Resumo:
Background Sexually-transmitted pathogens often have severe reproductive health implications if treatment is delayed or absent, especially in females. The complex processes of disease progression, namely replication and ascension of the infection through the genital tract, span both extracellular and intracellular physiological scales, and in females can vary over the distinct phases of the menstrual cycle. The complexity of these processes, coupled with the common impossibility of obtaining comprehensive and sequential clinical data from individual human patients, makes mathematical and computational modelling valuable tools in developing our understanding of the infection, with a view to identifying new interventions. While many within-host models of sexually-transmitted infections (STIs) are available in existing literature, these models are difficult to deploy in clinical/experimental settings since simulations often require complex computational approaches. Results We present STI-GMaS (Sexually-Transmitted Infections – Graphical Modelling and Simulation), an environment for simulation of STI models, with a view to stimulating the uptake of these models within the laboratory or clinic. The software currently focuses upon the representative case-study of Chlamydia trachomatis, the most common sexually-transmitted bacterial pathogen of humans. Here, we demonstrate the use of a hybrid PDE–cellular automata model for simulation of a hypothetical Chlamydia vaccination, demonstrating the effect of a vaccine-induced antibody in preventing the infection from ascending to above the cervix. This example illustrates the ease with which existing models can be adapted to describe new studies, and its careful parameterisation within STI-GMaS facilitates future tuning to experimental data as they arise. Conclusions STI-GMaS represents the first software designed explicitly for in-silico simulation of STI models by non-theoreticians, thus presenting a novel route to bridging the gap between computational and clinical/experimental disciplines. With the propensity for model reuse and extension, there is much scope within STI-GMaS to allow clinical and experimental studies to inform model inputs and drive future model development. Many of the modelling paradigms and software design principles deployed to date transfer readily to other STIs, both bacterial and viral; forthcoming releases of STI-GMaS will extend the software to incorporate a more diverse range of infections.
Resumo:
Transmissible diseases are re-emerging as a global problem, with Sexually Transmitted Diseases (STDs) becoming endemic. Chlamydia trachomatis is the leading cause of bacterially-acquired STD worldwide, with the Australian cost of infection estimated at $90 - $160 million annually. Studies using animal models of genital tract Chlamydia infection suggested that the hormonal status of the genital tract epithelium at the time of exposure may influence the outcome of infection. Oral contraceptive use also increased the risk of contracting chlamydial infections compared to women not using contraception. Generally it was suggested that the outcome of chlamydial infection is determined in part by the hormonal status of the epithelium at the time of exposure. Using the human endolmetrial cell line ECC-1 this study investigated the effects of C. trachomatis serovar D infection, in conjunction with the female sex hormones, 17β-estradiol and progesterone, on chlamydial gene expression. While previous studies have examined the host response, this is the first study to examine C.trachomatis gene expression under different hormonal conditions. We have highlighted a basic model of C. trachomatis gene regulation in the presence of steroid hormones by identifying 60 genes that were regulated by addition of estradiol and/or progesterone. In addition, the third chapter of this thesis discussed and compared the significance of the current findings in the context of data from other research groups to improve our understanding of the molecular basis of chlamydial persistence under hormonal different conditions. In addition, this study analysed the effects of these female sex hormones and C. trachomatis Serovar D infection, on host susceptibility and bacterial growth. Our results clearly demonstrated that addition of steroid hormones not only had a great impact on the level of infectivity of epithelial cells with C.trachomatis serovar D, but also the morphology of chlamydial inclusions was affected by hormone supplementation.
Resumo:
There is an urgent need to develop safe, effective, dual-purpose contraceptive agents that combine the prevention of pregnancy with protection against sexually transmitted diseases. Here we report the identification of a group of compounds that on contact with human spermatozoa induce a state of “spermostasis,” characterized by the extremely rapid inhibition of sperm movement without compromising cell viability. These spermostatic agents were more active and significantly less toxic than the reagent in current clinical use, nonoxynol 9, giving therapeutic indices (ratio of spermostatic to cytotoxic activity) that were orders of magnitude greater than this traditional spermicide. Although certain compounds could trigger reactive oxygen species generation by spermatozoa, this activity was not correlated with spermostasis. Rather, the latter was associated with alkylation of two major sperm tail proteins that were identified as A Kinase-Anchoring Proteins (AKAP3 and AKAP4) by mass spectrometry. As a consequence of disrupted AKAP function, the abilities of cAMP to drive protein kinase A-dependent activities in the sperm tail, such as the activation of SRC and the consequent stimulation of tyrosine phosphorylation, were suppressed. Furthermore, analysis of microbicidal activity using Chlamydia muridarum revealed powerful inhibitory effects at the same low micromolar doses that suppressed sperm movement. In this case, the microbicidal action was associated with alkylation of Major Outer Membrane Protein (MOMP), a major chlamydial membrane protein. Taken together, these results have identified for the first time a novel set of cellular targets and chemical principles capable of providing simultaneous defense against both fertility and the spread of sexually transmitted disease.
Resumo:
Chlamydia trachomatis is a major cause of sexually transmitted diseases worldwide. There currently is no vaccine to protect against chlamydial infection of the female reproductive tract. Vaccine development has predominantly involved using the murine model, however infection of female guinea pigs with Chlamydia caviae more closely resembles chlamydial infection of the human female reproductive tract, and presents a better model to assess potential human chlamydial vaccines. We immunised female guinea pigs intranasally with recombinant major outer membrane protein (r-MOMP) combined with CpG-10109 and cholera toxin adjuvants. Both systemic and mucosal immune responses were elicited in immunised animals. MOMP-specific IgG and IgA were present in the vaginal mucosae, and high levels of MOMP-specific IgG were detected in the serum of immunised animals. Antibodies from the vaginal mucosae were also shown to be capable of neutralising C. caviae in vitro. Following immunisation, animals were challenged intravaginally with a live C. caviae infection of 102 inclusion forming units. We observed a decrease in duration of infection and a significant (p<0.025) reduction in infection load in r-MOMP immunised animals, compared to animals immunised with adjuvant only. Importantly, we also observed a marked reduction in upper reproductive tract (URT) pathology in r-MOMP immunised animals. Intranasal immunisation of female guinea pigs with r-MOMP was able to provide partial protection against C. caviae infection, not only by reducing chlamydial burden but also URT pathology. This data demonstrates the value of using the guinea pig model to evaluate potential chlamydial vaccines for protection against infection and disease pathology caused by C. trachomatis in the female reproductive tract.
Resumo:
Chlamydial infections of humans can cause blindness and infertility as a result of diseases such as keratoconjunctivitis (trachoma), urethritis and cervicitis. However, in greater than half of all chlamydial diseases in males and females there are no signs or symptoms of infection. Chlamydia trachomatis is the causative bacterial organism responsible for the global estimate of 40.6 million people currently suffering with active trachoma and for the five million new cases of sexually transmitted infections each year in the United States of America. Even though antibiotics are available to treat Chlamydia, the incidence of each of these primarily asymptomatic infections continues to increase. In this Chapter we review the current knowledge of C.trachomatis including clinicial diseases and sequelae, the chlamydial developmental cycle in vivo, immunobiology and immune responses to infections, chlamydial genomics and vaccine development.
Resumo:
International students may experience a variety of sexual health problems which include unplanned pregnancies, abortions and sexually transmitted diseases. These are often because of limited knowledge of sexual health matters and lack of sexual health education and/or access to health services in their home country. A study was undertaken to identify the concerns of international students and how to provide culturally appropriate promotion of sexual health for international students at Queensland University of Technology (QUT). The project included consultations with stakeholders, interviews with key informants, an online survey and focus group discussions with international students. The project found that sexual health is a concern for international students, particularly in developing relationships and when becoming sexually active in Australia, and there is a perceived lack of access to health services and insufficient knowledge on sexual health matters. Preferred methods of dissemination of sexual health information included use of student mentors, web-based online resources, brochures and confidential on-line advice.
Resumo:
Successful control of sexually transmitted diseases (STDs) through vaccination will require the development of vaccine strategies that target protective immunity to both the female and male reproductive tracts (MRT). In the male, the immune privileged nature of the male reproductive tract provides a barrier to entry of serum immunoglobulins into the male reproductive ducts, thereby preventing the induction of protective immunity using conventional injectable vaccination techniques. In this study we investigated the potential of intranasal (IN) immunization to elicit anti-chlamydial immunity in BALB/c male mice. Intranasal immunization with Chlamydia muridarum major outer membrane protein (MOMP) admixed with cholera toxin (CT) resulted in high levels of MOMP-specific IgA in prostatic fluids (PF) and MOMP-specific IgA-secreting cells in the prostate. Prostatic fluid IgA inhibited in vitro infection of McCoy cells with C. muridarum. Using RT-PCR we also show that mRNA for the polymeric immunoglobulin receptor (PIgR), which transports IgA across mucosal epithelia, is expressed only in the prostate but not in other regions of the male reproductive ducts upstream of the prostate. These data suggest that using intranasal immunization to target IgA to the prostate may protect males against STDs while at the same time maintaining the state of immune privilege within the MRT.
Resumo:
Background: Serosorting, the practice of seeking to engage in unprotected anal intercourse with partners of the same HIV status as oneself, has been increasing among men who have sex with men. However, the effectiveness of serosorting as a strategy to reduce HIV risk is unclear, especially since it depends on the frequency of HIV testing. Methods: We estimated the relative risk of HIV acquisition associated with serosorting compared with not serosorting by using a mathematical model, informed by detailed behavioral data from a highly studied cohort of gay men. Results: We demonstrate that serosorting is unlikely to be highly beneficial in many populations of men who have sex with men, especially where the prevalence of undiagnosed HIV infections is relatively high. We find that serosorting is only beneficial in reducing the relative risk of HIV transmission if the prevalence of undiagnosed HIV infections is less than ∼20% and ∼40%, in populations of high (70%) and low (20%) treatment rates, respectively, even though treatment reduces the absolute risk of HIV transmission. Serosorting can be expected to lead to increased risk of HIV acquisition in many settings. In settings with low HIV testing rates serosorting can more than double the risk of HIV acquisition. Conclusions: Therefore caution should be taken before endorsing the practice of serosorting. It is very important to continue promotion of frequent HIV testing and condom use, particularly among people at high risk.