16 resultados para Tails
em Queensland University of Technology - ePrints Archive
Resumo:
This paper reads a range of nineteenth-century texts for children that retell either Shakespeare's The Tempest or mermaid narratives, considering the models of feminine subjectivity and sexuality that they construct. It then moves on to two key contemporary texts — Disney's film adaptation of The Little Mermaid (Clements and Musker 1989) and Penni Russon's Undine (2004) — that combine the Shakespearean heroine with the mermaid, and reads them against the nineteenth-century models. Ultimately, the essay determines that, while these texts seem to perform a progressive appropriation of the two traditions, they actually combine the most conservative aspects of both The Tempest and mermaid stories to produce authoritative (and dangerously persuasive) ideals of passive feminine sexuality that confine girls within patriarchally-dictated familial positions. The new figure for adolescent female subjectivity, the mermaid-Miranda, becomes in turn a model of identification and aspiration for the implied juvenile consumer.
Resumo:
The social tags in web 2.0 are becoming another important information source to profile users' interests and preferences to make personalized recommendations. To solve the problem of low information sharing caused by the free-style vocabulary of tags and the long tails of the distribution of tags and items, this paper proposes an approach to integrate the social tags given by users and the item taxonomy with standard vocabulary and hierarchical structure provided by experts to make personalized recommendations. The experimental results show that the proposed approach can effectively improve the information sharing and recommendation accuracy.
Resumo:
Financial processes may possess long memory and their probability densities may display heavy tails. Many models have been developed to deal with this tail behaviour, which reflects the jumps in the sample paths. On the other hand, the presence of long memory, which contradicts the efficient market hypothesis, is still an issue for further debates. These difficulties present challenges with the problems of memory detection and modelling the co-presence of long memory and heavy tails. This PhD project aims to respond to these challenges. The first part aims to detect memory in a large number of financial time series on stock prices and exchange rates using their scaling properties. Since financial time series often exhibit stochastic trends, a common form of nonstationarity, strong trends in the data can lead to false detection of memory. We will take advantage of a technique known as multifractal detrended fluctuation analysis (MF-DFA) that can systematically eliminate trends of different orders. This method is based on the identification of scaling of the q-th-order moments and is a generalisation of the standard detrended fluctuation analysis (DFA) which uses only the second moment; that is, q = 2. We also consider the rescaled range R/S analysis and the periodogram method to detect memory in financial time series and compare their results with the MF-DFA. An interesting finding is that short memory is detected for stock prices of the American Stock Exchange (AMEX) and long memory is found present in the time series of two exchange rates, namely the French franc and the Deutsche mark. Electricity price series of the five states of Australia are also found to possess long memory. For these electricity price series, heavy tails are also pronounced in their probability densities. The second part of the thesis develops models to represent short-memory and longmemory financial processes as detected in Part I. These models take the form of continuous-time AR(∞) -type equations whose kernel is the Laplace transform of a finite Borel measure. By imposing appropriate conditions on this measure, short memory or long memory in the dynamics of the solution will result. A specific form of the models, which has a good MA(∞) -type representation, is presented for the short memory case. Parameter estimation of this type of models is performed via least squares, and the models are applied to the stock prices in the AMEX, which have been established in Part I to possess short memory. By selecting the kernel in the continuous-time AR(∞) -type equations to have the form of Riemann-Liouville fractional derivative, we obtain a fractional stochastic differential equation driven by Brownian motion. This type of equations is used to represent financial processes with long memory, whose dynamics is described by the fractional derivative in the equation. These models are estimated via quasi-likelihood, namely via a continuoustime version of the Gauss-Whittle method. The models are applied to the exchange rates and the electricity prices of Part I with the aim of confirming their possible long-range dependence established by MF-DFA. The third part of the thesis provides an application of the results established in Parts I and II to characterise and classify financial markets. We will pay attention to the New York Stock Exchange (NYSE), the American Stock Exchange (AMEX), the NASDAQ Stock Exchange (NASDAQ) and the Toronto Stock Exchange (TSX). The parameters from MF-DFA and those of the short-memory AR(∞) -type models will be employed in this classification. We propose the Fisher discriminant algorithm to find a classifier in the two and three-dimensional spaces of data sets and then provide cross-validation to verify discriminant accuracies. This classification is useful for understanding and predicting the behaviour of different processes within the same market. The fourth part of the thesis investigates the heavy-tailed behaviour of financial processes which may also possess long memory. We consider fractional stochastic differential equations driven by stable noise to model financial processes such as electricity prices. The long memory of electricity prices is represented by a fractional derivative, while the stable noise input models their non-Gaussianity via the tails of their probability density. A method using the empirical densities and MF-DFA will be provided to estimate all the parameters of the model and simulate sample paths of the equation. The method is then applied to analyse daily spot prices for five states of Australia. Comparison with the results obtained from the R/S analysis, periodogram method and MF-DFA are provided. The results from fractional SDEs agree with those from MF-DFA, which are based on multifractal scaling, while those from the periodograms, which are based on the second order, seem to underestimate the long memory dynamics of the process. This highlights the need and usefulness of fractal methods in modelling non-Gaussian financial processes with long memory.
Resumo:
In this thesis we are interested in financial risk and the instrument we want to use is Value-at-Risk (VaR). VaR is the maximum loss over a given period of time at a given confidence level. Many definitions of VaR exist and some will be introduced throughout this thesis. There two main ways to measure risk and VaR: through volatility and through percentiles. Large volatility in financial returns implies greater probability of large losses, but also larger probability of large profits. Percentiles describe tail behaviour. The estimation of VaR is a complex task. It is important to know the main characteristics of financial data to choose the best model. The existing literature is very wide, maybe controversial, but helpful in drawing a picture of the problem. It is commonly recognised that financial data are characterised by heavy tails, time-varying volatility, asymmetric response to bad and good news, and skewness. Ignoring any of these features can lead to underestimating VaR with a possible ultimate consequence being the default of the protagonist (firm, bank or investor). In recent years, skewness has attracted special attention. An open problem is the detection and modelling of time-varying skewness. Is skewness constant or there is some significant variability which in turn can affect the estimation of VaR? This thesis aims to answer this question and to open the way to a new approach to model simultaneously time-varying volatility (conditional variance) and skewness. The new tools are modifications of the Generalised Lambda Distributions (GLDs). They are four-parameter distributions, which allow the first four moments to be modelled nearly independently: in particular we are interested in what we will call para-moments, i.e., mean, variance, skewness and kurtosis. The GLDs will be used in two different ways. Firstly, semi-parametrically, we consider a moving window to estimate the parameters and calculate the percentiles of the GLDs. Secondly, parametrically, we attempt to extend the GLDs to include time-varying dependence in the parameters. We used the local linear regression to estimate semi-parametrically conditional mean and conditional variance. The method is not efficient enough to capture all the dependence structure in the three indices —ASX 200, S&P 500 and FT 30—, however it provides an idea of the DGP underlying the process and helps choosing a good technique to model the data. We find that GLDs suggest that moments up to the fourth order do not always exist, there existence appears to vary over time. This is a very important finding, considering that past papers (see for example Bali et al., 2008; Hashmi and Tay, 2007; Lanne and Pentti, 2007) modelled time-varying skewness, implicitly assuming the existence of the third moment. However, the GLDs suggest that mean, variance, skewness and in general the conditional distribution vary over time, as already suggested by the existing literature. The GLDs give good results in estimating VaR on three real indices, ASX 200, S&P 500 and FT 30, with results very similar to the results provided by historical simulation.
Resumo:
The structure of the 1:1 proton-transfer compound from the reaction of L-tartaric acid with the azo-dye precursor aniline yellow [4-(phenylazo)aniline], 4-(phenyldiazenyl)anilinium hydrogen 2R,3R-tartrate C12H12N3+ . C4H6O6- has been determined at 200 K. The asymmetric unit of the compound contains two independent phenylazoanilinium cations and two hydrogen L-tartrate anions. The structure is unusual in that all four phenyl rings of both cations have identical 50% rotational disorder. The two hydrogen L-tartrate anions form independent but similar chains through head-to-tail carboxylic O--H...O~carboxyl~ hydrogen bonds [graph set C7] which are then extended into a two-dimensional hydrogen-bonded sheet structure through hydroxyl O--H...O hydrogen-bonding links. The anilinium groups of the phenyldiazenyl cations are incorporated into the sheets and also provide internal hydrogen-bonding extensions while their aromatic tails layer in the structure without significant interaction except for weak \p--\p interactions [minimum ring centroid separation, 3.844(3) \%A]. The hydrogen L-tartrate residues of both anions have the common short intramolecular hydroxyl O--H...O~carboxyl~ hydogen bonds. This work has provided a solution to the unusual disorder problem inherent in the structure of this salt as well as giving another example of the utility of the hydrogen tartrate in the generation of sheet substructures in molecular assembly processes.
Resumo:
In an Australian context, the term hooning refers to risky driving behaviours such as illegal street racing and speed trials, as well as behaviours that involve unnecessary noise and smoke, which include burn outs, donuts, fish tails, drifting and other skids. Hooning receives considerable negative media attention in Australia, and since the 1990s all Australian jurisdictions have implemented vehicle impoundment programs to deal with the problem. However, there is limited objective evidence of the road safety risk associated with hooning behaviours. Attempts to estimate the risk associated with hooning are limited by official data collection and storage practices, and the willingness of drivers to admit to their illegal behaviour in the event of a crash. International evidence suggests that illegal street racing is associated with only a small proportion of fatal crashes; however, hooning in an Australian context encompasses a broader group of driving behaviours than illegal street racing alone, and it is possible that the road safety risks will differ with these behaviours. There is evidence from North American jurisdictions that vehicle impoundment programs are effective for managing drink driving offenders, and drivers who continue to drive while disqualified or suspended both during and post-impoundment. However, these programs used impoundment periods of 30 – 180 days (depending on the number of previous offences). In Queensland the penalty for a first hooning offence is 48 hours, while the vehicle can be impounded for up to 3 months for a second offence, or permanently for a third or subsequent offence within three years. Thus, it remains unclear whether similar effects will be seen for hooning offenders in Australia, as no evaluations of vehicle impoundment programs for hooning have been published. To address these research needs, this program of research consisted of three complementary studies designed to: (1) investigate the road safety implications of hooning behaviours in terms of the risks associated with the specific behaviours, and the drivers who engage in these behaviours; and (2) assess the effectiveness of current approaches to dealing with the problem; in order to (3) inform policy and practice in the area of hooning behaviour. Study 1 involved qualitative (N = 22) and quantitative (N = 290) research with drivers who admitted engaging in hooning behaviours on Queensland roads. Study 2 involved a systematic profile of a large sample of drivers (N = 834) detected and punished for a hooning offence in Queensland, and a comparison of their driving and crash histories with a randomly sampled group of Queensland drivers with the same gender and age distribution. Study 3 examined the post-impoundment driving behaviour of hooning offenders (N = 610) to examine the effects of vehicle impoundment on driving behaviour. The theoretical framework used to guide the research incorporated expanded deterrence theory, social learning theory, and driver thrill-seeking perspectives. This framework was used to explore factors contributing to hooning behaviours, and interpret the results of the aspects of the research designed to explore the effectiveness of vehicle impoundment as a countermeasure for hooning. Variables from each of the perspectives were related to hooning measures, highlighting the complexity of the behaviour. This research found that the road safety risk of hooning behaviours appears low, as only a small proportion of the hooning offences in Study 2 resulted in a crash. However, Study 1 found that hooning-related crashes are less likely to be reported than general crashes, particularly when they do not involve an injury, and that higher frequencies of hooning behaviours are associated with hooning-related crash involvement. Further, approximately one fifth of drivers in Study 1 reported being involved in a hooning-related crash in the previous three years, which is comparable to general crash involvement among the general population of drivers in Queensland. Given that hooning-related crashes represented only a sub-set of crash involvement for this sample, this suggests that there are risks associated with hooning behaviour that are not apparent in official data sources. Further, the main evidence of risk associated with the behaviour appears to relate to the hooning driver, as Study 2 found that these drivers are likely to engage in other risky driving behaviours (particularly speeding and driving vehicles with defects or illegal modifications), and have significantly more traffic infringements, licence sanctions and crashes than drivers of a similar (i.e., young) age. Self-report data from the Study 1 samples indicated that Queensland’s vehicle impoundment and forfeiture laws are perceived as severe, and that many drivers have reduced their hooning behaviour to avoid detection. However, it appears that it is more common for drivers to have simply changed the location of their hooning behaviour to avoid detection. When the post-impoundment driving behaviour of the sample of hooning offenders was compared to their pre-impoundment behaviour to examine the effectiveness of vehicle impoundment in Study 3, it was found that there was a small but significant reduction in hooning offences, and also for other traffic infringements generally. As Study 3 was observational, it was not possible to control for extraneous variables, and is, therefore, possible that some of this reduction was due to other factors, such as a reduction in driving exposure, the effects of changes to Queensland’s Graduated Driver Licensing scheme that were implemented during the study period and affected many drivers in the offender sample due to their age, or the extension of vehicle impoundment to other types of offences in Queensland during the post-impoundment period. However, there was a protective effect observed, in that hooning offenders did not show the increase in traffic infringements in the post period that occurred within the comparison sample. This suggests that there may be some effect of vehicle impoundment on the driving behaviour of hooning offenders, and that this effect is not limited to their hooning driving behaviour. To be more confident in these results, it is necessary to measure driving exposure during the post periods to control for issues such as offenders being denied access to vehicles. While it was not the primary aim of this program of research to compare the utility of different theoretical perspectives, the findings of the research have a number of theoretical implications. For example, it was found that only some of the deterrence variables were related to hooning behaviours, and sometimes in the opposite direction to predictions. Further, social learning theory variables had stronger associations with hooning. These results suggest that a purely legal approach to understanding hooning behaviours, and designing and implementing countermeasures designed to reduce these behaviours, are unlikely to be successful. This research also had implications for policy and practice, and a number of recommendations were made throughout the thesis to improve the quality of relevant data collection practices. Some of these changes have already occurred since the expansion of the application of vehicle impoundment programs to other offences in Queensland. It was also recommended that the operational and resource costs of these laws should be compared to the road safety benefits in ongoing evaluations of effectiveness to ensure that finite traffic policing resources are allocated in a way that produces maximum road safety benefits. However, as the evidence of risk associated with the hooning driver is more compelling than that associated with hooning behaviour, it was argued that the hooning driver may represent the better target for intervention. Suggestions for future research include ongoing evaluations of the effectiveness of vehicle impoundment programs for hooning and other high-risk driving behaviours, and the exploration of additional potential targets for intervention to reduce hooning behaviour. As the body of knowledge regarding the factors contributing to hooning increases, along with the identification of potential barriers to the effectiveness of current countermeasures, recommendations for changes in policy and practice for hooning behaviours can be made.
Resumo:
Complex networks have been studied extensively due to their relevance to many real-world systems such as the world-wide web, the internet, biological and social systems. During the past two decades, studies of such networks in different fields have produced many significant results concerning their structures, topological properties, and dynamics. Three well-known properties of complex networks are scale-free degree distribution, small-world effect and self-similarity. The search for additional meaningful properties and the relationships among these properties is an active area of current research. This thesis investigates a newer aspect of complex networks, namely their multifractality, which is an extension of the concept of selfsimilarity. The first part of the thesis aims to confirm that the study of properties of complex networks can be expanded to a wider field including more complex weighted networks. Those real networks that have been shown to possess the self-similarity property in the existing literature are all unweighted networks. We use the proteinprotein interaction (PPI) networks as a key example to show that their weighted networks inherit the self-similarity from the original unweighted networks. Firstly, we confirm that the random sequential box-covering algorithm is an effective tool to compute the fractal dimension of complex networks. This is demonstrated on the Homo sapiens and E. coli PPI networks as well as their skeletons. Our results verify that the fractal dimension of the skeleton is smaller than that of the original network due to the shortest distance between nodes is larger in the skeleton, hence for a fixed box-size more boxes will be needed to cover the skeleton. Then we adopt the iterative scoring method to generate weighted PPI networks of five species, namely Homo sapiens, E. coli, yeast, C. elegans and Arabidopsis Thaliana. By using the random sequential box-covering algorithm, we calculate the fractal dimensions for both the original unweighted PPI networks and the generated weighted networks. The results show that self-similarity is still present in generated weighted PPI networks. This implication will be useful for our treatment of the networks in the third part of the thesis. The second part of the thesis aims to explore the multifractal behavior of different complex networks. Fractals such as the Cantor set, the Koch curve and the Sierspinski gasket are homogeneous since these fractals consist of a geometrical figure which repeats on an ever-reduced scale. Fractal analysis is a useful method for their study. However, real-world fractals are not homogeneous; there is rarely an identical motif repeated on all scales. Their singularity may vary on different subsets; implying that these objects are multifractal. Multifractal analysis is a useful way to systematically characterize the spatial heterogeneity of both theoretical and experimental fractal patterns. However, the tools for multifractal analysis of objects in Euclidean space are not suitable for complex networks. In this thesis, we propose a new box covering algorithm for multifractal analysis of complex networks. This algorithm is demonstrated in the computation of the generalized fractal dimensions of some theoretical networks, namely scale-free networks, small-world networks, random networks, and a kind of real networks, namely PPI networks of different species. Our main finding is the existence of multifractality in scale-free networks and PPI networks, while the multifractal behaviour is not confirmed for small-world networks and random networks. As another application, we generate gene interactions networks for patients and healthy people using the correlation coefficients between microarrays of different genes. Our results confirm the existence of multifractality in gene interactions networks. This multifractal analysis then provides a potentially useful tool for gene clustering and identification. The third part of the thesis aims to investigate the topological properties of networks constructed from time series. Characterizing complicated dynamics from time series is a fundamental problem of continuing interest in a wide variety of fields. Recent works indicate that complex network theory can be a powerful tool to analyse time series. Many existing methods for transforming time series into complex networks share a common feature: they define the connectivity of a complex network by the mutual proximity of different parts (e.g., individual states, state vectors, or cycles) of a single trajectory. In this thesis, we propose a new method to construct networks of time series: we define nodes by vectors of a certain length in the time series, and weight of edges between any two nodes by the Euclidean distance between the corresponding two vectors. We apply this method to build networks for fractional Brownian motions, whose long-range dependence is characterised by their Hurst exponent. We verify the validity of this method by showing that time series with stronger correlation, hence larger Hurst exponent, tend to have smaller fractal dimension, hence smoother sample paths. We then construct networks via the technique of horizontal visibility graph (HVG), which has been widely used recently. We confirm a known linear relationship between the Hurst exponent of fractional Brownian motion and the fractal dimension of the corresponding HVG network. In the first application, we apply our newly developed box-covering algorithm to calculate the generalized fractal dimensions of the HVG networks of fractional Brownian motions as well as those for binomial cascades and five bacterial genomes. The results confirm the monoscaling of fractional Brownian motion and the multifractality of the rest. As an additional application, we discuss the resilience of networks constructed from time series via two different approaches: visibility graph and horizontal visibility graph. Our finding is that the degree distribution of VG networks of fractional Brownian motions is scale-free (i.e., having a power law) meaning that one needs to destroy a large percentage of nodes before the network collapses into isolated parts; while for HVG networks of fractional Brownian motions, the degree distribution has exponential tails, implying that HVG networks would not survive the same kind of attack.
Resumo:
In this paper, a class of fractional advection–dispersion models (FADMs) is considered. These models include five fractional advection–dispersion models, i.e., the time FADM, the mobile/immobile time FADM with a time Caputo fractional derivative 0 < γ < 1, the space FADM with two sides Riemann–Liouville derivatives, the time–space FADM and the time fractional advection–diffusion-wave model with damping with index 1 < γ < 2. These equations can be used to simulate the regional-scale anomalous dispersion with heavy tails. We propose computationally effective implicit numerical methods for these FADMs. The stability and convergence of the implicit numerical methods are analysed and compared systematically. Finally, some results are given to demonstrate the effectiveness of theoretical analysis.
Resumo:
In this paper, a class of fractional advection-dispersion models (FADM) is investigated. These models include five fractional advection-dispersion models: the immobile, mobile/immobile time FADM with a temporal fractional derivative 0 < γ < 1, the space FADM with skewness, both the time and space FADM and the time fractional advection-diffusion-wave model with damping with index 1 < γ < 2. They describe nonlocal dependence on either time or space, or both, to explain the development of anomalous dispersion. These equations can be used to simulate regional-scale anomalous dispersion with heavy tails, for example, the solute transport in watershed catchments and rivers. We propose computationally effective implicit numerical methods for these FADM. The stability and convergence of the implicit numerical methods are analyzed and compared systematically. Finally, some results are given to demonstrate the effectiveness of our theoretical analysis.
Resumo:
The three-component reaction-diffusion system introduced in [C. P. Schenk et al., Phys. Rev. Lett., 78 (1997), pp. 3781–3784] has become a paradigm model in pattern formation. It exhibits a rich variety of dynamics of fronts, pulses, and spots. The front and pulse interactions range in type from weak, in which the localized structures interact only through their exponentially small tails, to strong interactions, in which they annihilate or collide and in which all components are far from equilibrium in the domains between the localized structures. Intermediate to these two extremes sits the semistrong interaction regime, in which the activator component of the front is near equilibrium in the intervals between adjacent fronts but both inhibitor components are far from equilibrium there, and hence their concentration profiles drive the front evolution. In this paper, we focus on dynamically evolving N-front solutions in the semistrong regime. The primary result is use of a renormalization group method to rigorously derive the system of N coupled ODEs that governs the positions of the fronts. The operators associated with the linearization about the N-front solutions have N small eigenvalues, and the N-front solutions may be decomposed into a component in the space spanned by the associated eigenfunctions and a component projected onto the complement of this space. This decomposition is carried out iteratively at a sequence of times. The former projections yield the ODEs for the front positions, while the latter projections are associated with remainders that we show stay small in a suitable norm during each iteration of the renormalization group method. Our results also help extend the application of the renormalization group method from the weak interaction regime for which it was initially developed to the semistrong interaction regime. The second set of results that we present is a detailed analysis of this system of ODEs, providing a classification of the possible front interactions in the cases of $N=1,2,3,4$, as well as how front solutions interact with the stationary pulse solutions studied earlier in [A. Doelman, P. van Heijster, and T. J. Kaper, J. Dynam. Differential Equations, 21 (2009), pp. 73–115; P. van Heijster, A. Doelman, and T. J. Kaper, Phys. D, 237 (2008), pp. 3335–3368]. Moreover, we present some results on the general case of N-front interactions.
Resumo:
The resection of DNA double-strand breaks (DSBs) to generate ssDNA tails is a pivotal event in the cellular response to these breaks. In the two-step model of resection, primarily elucidated in yeast, initial resection by Mre11-CtIP is followed by extensive resection by two distinct pathways involving Exo1 or BLM/WRN-Dna2. However, resection pathways and their exact contributions in humans in vivo are not as clearly worked out as in yeast. Here, we examined the contribution of Exo1 to DNA end resection in humans in vivo in response to ionizing radiation (IR) and its relationship with other resection pathways (Mre11-CtIP or BLM/WRN). We find that Exo1 plays a predominant role in resection in human cells along with an alternate pathway dependent on WRN. While Mre11 and CtIP stimulate resection in human cells, they are not absolutely required for this process and Exo1 can function in resection even in the absence of Mre11-CtIP. Interestingly, the recruitment of Exo1 to DNA breaks appears to be inhibited by the NHEJ protein Ku80, and the higher level of resection that occurs upon siRNA-mediated depletion of Ku80 is dependent on Exo1. In addition, Exo1 may be regulated by 53BP1 and Brca1, and the restoration of resection in BRCA1-deficient cells upon depletion of 53BP1 is dependent on Exo1. Finally, we find that Exo1-mediated resection facilitates a transition from ATM- to ATR-mediated cell cycle checkpoint signaling. Our results identify Exo1 as a key mediator of DNA end resection and DSB repair and damage signaling decisions in human cells.
Resumo:
The social tags in Web 2.0 are becoming another important information source to profile users' interests and preferences to make personalized recommendations. To solve the problem of low information sharing caused by the free-style vocabulary of tags and the long tails of the distribution of tags and items, this paper proposes an approach to integrate the social tags given by users and the item taxonomy with standard vocabulary and hierarchical structure provided by experts to make personalized recommendations. The experimental results show that the proposed approach can effectively improve the information sharing and recommendation accuracy.
Resumo:
In two earlier papers, an intricate Jackpot structure and analysis of pseudo-random numbers for Keno in the Australian state of Queensland circa 2000 were described. Aspects of the work were also reported at an international conference . Since that time, many aspects of the game in Australia have changed. The present paper presents more up-to-date details of Keno throughout the states of Queensland, New South Wales and Victoria. A much simpler jackpot structure is now in place and this is described. Two add-ons or side-bets to the game are detailed: the trivial Heads or Tails and the more interesting Keno Bonus, which leads to consideration of the subset sum problem. The most intricate structure is where Heads or Tails and Keno Bonus are combined, and here, the issue of independence arises. Closed expressions for expected return to player (ERTP) are presented in all cases.
Resumo:
Systemic lupus erythematosus (SLE) is distinct among autoimmune diseases because of its association with circulating autoantibodies reactive against host DNA. The precise role that anti-DNA antibodies play in SLE pathophysiology remains to be elucidated, and potential applications of lupus autoantibodies in cancer therapy have not previously been explored. We report the unexpected finding that a cell-penetrating lupus autoantibody, 3E10, has potential as a targeted therapy for DNA repair–deficient malignancies. We find that 3E10 preferentially binds DNA single-strand tails, inhibits key steps in DNA single-strand and double-strand break repair, and sensitizes cultured tumor cells and human tumor xenografts to DNA-damaging therapy, including doxorubicin and radiation. Moreover, we demonstrate that 3E10 alone is synthetically lethal to BRCA2-deficient human cancer cells and selectively sensitizes such cells to low-dose doxorubicin. Our results establish an approach to cancer therapy that we expect will be particularly applicable to BRCA2-related malignancies such as breast, ovarian, and prostate cancers. In addition, our findings raise the possibility that lupus autoantibodies may be partly responsible for the intrinsic deficiencies in DNA repair and the unexpectedly low rates of breast, ovarian, and prostate cancers observed in SLE patients. In summary, this study provides the basis for the potential use of a lupus anti-DNA antibody in cancer therapy and identifies lupus autoantibodies as a potentially rich source of therapeutic agents.
Resumo:
Aspects of Keno modelling throughout the Australian states of Queensland, New South Wales and Victoria are discussed: the trivial Heads or Tails and the more interesting Keno Bonus, which leads to consideration of the subset sum problem. The most intricate structure is where Heads or Tails and Keno Bonus are combined, and here, the issue of independence arises. Closed expressions for expected return to player are presented in each case.