48 resultados para TRANSITION METAL CATIONS
em Queensland University of Technology - ePrints Archive
Resumo:
In this paper, we report the preparation and characterisation of nanometer-sized TiO2, CdO, and ZnO semiconductor particles trapped in zeolite NaY. Preparation of these particles was carried out via the traditional ion exchange method and subsequent calcination procedure. It was found that the smaller cations, i.e., Cd2+ and Zn2+ could be readily introduced into the SI′ and SII′ sites located in the sodalite cages, through ion exchange; while this is not the case for the larger Ti species, i.e., Ti monomer [TiO]2+ or dimer [Ti2O3]2+ which were predominantly dispersed on the external surface of zeolite NaY. The subsequent calcination procedure promoted these Ti species to migrate into the internal surface of the supercages. These semiconductor particles confined in NaY zeolite host exhibited a significant blue shift in the UV-VIS absorption spectra, in contrast to the respective bulk semiconductor materials, due to the quantum size effect (QSE). The particle sizes calculated from the UV-VIS optical absorption spectra using the effective mass approximation model are in good agreement with the atomic absorption data.
Resumo:
TCNQ·− radical anions (TCNQ = 7,7,8,8,-tetracyanoquinodimethane) form a wide range of semiconducting coordination polymers when coordinated to transition metals. Some such as CuTCNQ and AgTCNQ exhibit molecular switching and memory storage properties; others have intriguing magnetic properties and for example may behave as molecular magnets at low temperature. In this review, the electro- and photo-chemical synthesis and characterization of this important class of material is reviewed. In particular, the electrochemistry and the redox properties of TCNQ derivatives of coordination polymers based on Cu, Ag, Mn, Fe, Co, Ni, Zn and Cd transition metals are surveyed, with an emphasis on the mechanistic aspects of their electrochemical formation via nucleation–growth processes. Given that TCNQ is an extremely good electron acceptor, readily forming TCNQ•− and TCNQ2-, electrochemical reduction of TCNQ in the presence of a transition metal ion provides an ideal method for synthesis of metal-TCNQ materials by electrocrystallization from organic solvents and ionic liquids or solid-solid transformation using TCNQ modified electrodes from aqueous media containing transition metal electrolytes. The significance of the reversible formal potential (E0f) in these studies is discussed. The coupling of electrocrystallisation on electrode surfaces and microscopic characterization of the electrodeposited materials reveals a wide range of morphologies and phases which strongly influence their properties and applications. Since TCNQ also can be photo-reduced in the presence of suitable electron donors, analogous photochemical approaches to the synthesis of TCNQ-transition metal derivatives are available. The advantages of electrochemical and photochemical methods of synthesis relative to chemical synthesis are outlined.
Resumo:
Various types of layered double hydroxides, a type of clay, were synthesised. They were then electrochemically tested to determine whether the samples would be suitable to store energy as supercapacitors. A manganese aluminium layered double hydroxide was electrochemically tested for the first time and found to have a large capacitance.
Resumo:
Single layered transition metal dichalcogenides have attracted tremendous research interest due to their structural phase diversities. By using a global optimization approach, we have discovered a new phase of transition metal dichalcogenides (labelled as T′′), which is confirmed to be energetically, dynamically and kinetically stable by our first-principles calculations. The new T′′ MoS2 phase exhibits an intrinsic quantum spin Hall (QSH) effect with a nontrivial gap as large as 0.42 eV, suggesting that a two-dimensional (2D) topological insulator can be achieved at room temperature. Most interestingly, there is a topological phase transition simply driven by a small tensile strain of up to 2%. Furthermore, all the known MX2 (M = Mo or W; X = S, Se or Te) monolayers in the new T′′ phase unambiguously display similar band topologies and strain controlled topological phase transitions. Our findings greatly enrich the 2D families of transition metal dichalcogenides and offer a feasible way to control the electronic states of 2D topological insulators for the fabrication of high-speed spintronics devices.
Resumo:
Two-dimensional (2D) transition metal oxide systems present exotic electronic properties and high specific surface areas, and also demonstrate promising applications ranging from electronics to energy storage. Yet, in contrast to other types of nanostructures, the question as to whether we could assemble 2D nanomaterials with an atomic thickness from molecules in a general way, which may give them some interesting properties such as those of graphene, still remains unresolved. Herein, we report a generalized and fundamental approach to molecular self-assembly synthesis of ultrathin 2D nanosheets of transition metal oxides by rationally employing lamellar reverse micelles. It is worth emphasizing that the synthesized crystallized ultrathin transition metal oxide nanosheets possess confined thickness, high specific surface area and chemically reactive facets, so that they could have promising applications in nanostructured electronics, photonics, sensors, and energy conversion and storage devices.
Resumo:
Transition metal oxides are functional materials that have advanced applications in many areas, because of their diverse properties (optical, electrical, magnetic, etc.), hardness, thermal stability and chemical resistance. Novel applications of the nanostructures of these oxides are attracting significant interest as new synthesis methods are developed and new structures are reported. Hydrothermal synthesis is an effective process to prepare various delicate structures of metal oxides on the scales from a few to tens of nanometres, specifically, the highly dispersed intermediate structures which are hardly obtained through pyro-synthesis. In this thesis, a range of new metal oxide (stable and metastable titanate, niobate) nanostructures, namely nanotubes and nanofibres, were synthesised via a hydrothermal process. Further structure modifications were conducted and potential applications in catalysis, photocatalysis, adsorption and construction of ceramic membrane were studied. The morphology evolution during the hydrothermal reaction between Nb2O5 particles and concentrated NaOH was monitored. The study demonstrates that by optimising the reaction parameters (temperature, amount of reactants), one can obtain a variety of nanostructured solids, from intermediate phases niobate bars and fibres to the stable phase cubes. Trititanate (Na2Ti3O7) nanofibres and nanotubes were obtained by the hydrothermal reaction between TiO2 powders or a titanium compound (e.g. TiOSO4·xH2O) and concentrated NaOH solution by controlling the reaction temperature and NaOH concentration. The trititanate possesses a layered structure, and the Na ions that exist between the negative charged titanate layers are exchangeable with other metal ions or H+ ions. The ion-exchange has crucial influence on the phase transition of the exchanged products. The exchange of the sodium ions in the titanate with H+ ions yields protonated titanate (H-titanate) and subsequent phase transformation of the H-titanate enable various TiO2 structures with retained morphology. H-titanate, either nanofibres or tubes, can be converted to pure TiO2(B), pure anatase, mixed TiO2(B) and anatase phases by controlled calcination and by a two-step process of acid-treatment and subsequent calcination. While the controlled calcination of the sodium titanate yield new titanate structures (metastable titanate with formula Na1.5H0.5Ti3O7, with retained fibril morphology) that can be used for removal of radioactive ions and heavy metal ions from water. The structures and morphologies of the metal oxides were characterised by advanced techniques. Titania nanofibres of mixed anatase and TiO2(B) phases, pure anatase and pure TiO2(B) were obtained by calcining H-titanate nanofibres at different temperatures between 300 and 700 °C. The fibril morphology was retained after calcination, which is suitable for transmission electron microscopy (TEM) analysis. It has been found by TEM analysis that in mixed-phase structure the interfaces between anatase and TiO2(B) phases are not random contacts between the engaged crystals of the two phases, but form from the well matched lattice planes of the two phases. For instance, (101) planes in anatase and (101) planes of TiO2(B) are similar in d spaces (~0.18 nm), and they join together to form a stable interface. The interfaces between the two phases act as an one-way valve that permit the transfer of photogenerated charge from anatase to TiO2(B). This reduces the recombination of photogenerated electrons and holes in anatase, enhancing the activity for photocatalytic oxidation. Therefore, the mixed-phase nanofibres exhibited higher photocatalytic activity for degradation of sulforhodamine B (SRB) dye under ultraviolet (UV) light than the nanofibres of either pure phase alone, or the mechanical mixtures (which have no interfaces) of the two pure phase nanofibres with a similar phase composition. This verifies the theory that the difference between the conduction band edges of the two phases may result in charge transfer from one phase to the other, which results in effectively the photogenerated charge separation and thus facilitates the redox reaction involving these charges. Such an interface structure facilitates charge transfer crossing the interfaces. The knowledge acquired in this study is important not only for design of efficient TiO2 photocatalysts but also for understanding the photocatalysis process. Moreover, the fibril titania photocatalysts are of great advantage when they are separated from a liquid for reuse by filtration, sedimentation, or centrifugation, compared to nanoparticles of the same scale. The surface structure of TiO2 also plays a significant role in catalysis and photocatalysis. Four types of large surface area TiO2 nanotubes with different phase compositions (labelled as NTA, NTBA, NTMA and NTM) were synthesised from calcination and acid treatment of the H-titanate nanotubes. Using the in situ FTIR emission spectrescopy (IES), desorption and re-adsorption process of surface OH-groups on oxide surface can be trailed. In this work, the surface OH-group regeneration ability of the TiO2 nanotubes was investigated. The ability of the four samples distinctively different, having the order: NTA > NTBA > NTMA > NTM. The same order was observed for the catalytic when the samples served as photocatalysts for the decomposition of synthetic dye SRB under UV light, as the supports of gold (Au) catalysts (where gold particles were loaded by a colloid-based method) for photodecomposition of formaldehyde under visible light and for catalytic oxidation of CO at low temperatures. Therefore, the ability of TiO2 nanotubes to generate surface OH-groups is an indicator of the catalytic activity. The reason behind the correlation is that the oxygen vacancies at bridging O2- sites of TiO2 surface can generate surface OH-groups and these groups facilitate adsorption and activation of O2 molecules, which is the key step of the oxidation reactions. The structure of the oxygen vacancies at bridging O2- sites is proposed. Also a new mechanism for the photocatalytic formaldehyde decomposition with the Au-TiO2 catalysts is proposed: The visible light absorbed by the gold nanoparticles, due to surface plasmon resonance effect, induces transition of the 6sp electrons of gold to high energy levels. These energetic electrons can migrate to the conduction band of TiO2 and are seized by oxygen molecules. Meanwhile, the gold nanoparticles capture electrons from the formaldehyde molecules adsorbed on them because of gold’s high electronegativity. O2 adsorbed on the TiO2 supports surface are the major electron acceptor. The more O2 adsorbed, the higher the oxidation activity of the photocatalyst will exhibit. The last part of this thesis demonstrates two innovative applications of the titanate nanostructures. Firstly, trititanate and metastable titanate (Na1.5H0.5Ti3O7) nanofibres are used as intelligent absorbents for removal of radioactive cations and heavy metal ions, utilizing the properties of the ion exchange ability, deformable layered structure, and fibril morphology. Environmental contamination with radioactive ions and heavy metal ions can cause a serious threat to the health of a large part of the population. Treatment of the wastes is needed to produce a waste product suitable for long-term storage and disposal. The ion-exchange ability of layered titanate structure permitted adsorption of bivalence toxic cations (Sr2+, Ra2+, Pb2+) from aqueous solution. More importantly, the adsorption is irreversible, due to the deformation of the structure induced by the strong interaction between the adsorbed bivalent cations and negatively charged TiO6 octahedra, and results in permanent entrapment of the toxic bivalent cations in the fibres so that the toxic ions can be safely deposited. Compared to conventional clay and zeolite sorbents, the fibril absorbents are of great advantage as they can be readily dispersed into and separated from a liquid. Secondly, new generation membranes were constructed by using large titanate and small ã-alumina nanofibres as intermediate and top layers, respectively, on a porous alumina substrate via a spin-coating process. Compared to conventional ceramic membranes constructed by spherical particles, the ceramic membrane constructed by the fibres permits high flux because of the large porosity of their separation layers. The voids in the separation layer determine the selectivity and flux of a separation membrane. When the sizes of the voids are similar (which means a similar selectivity of the separation layer), the flux passing through the membrane increases with the volume of the voids which are filtration passages. For the ideal and simplest texture, a mesh constructed with the nanofibres 10 nm thick and having a uniform pore size of 60 nm, the porosity is greater than 73.5 %. In contrast, the porosity of the separation layer that possesses the same pore size but is constructed with metal oxide spherical particles, as in conventional ceramic membranes, is 36% or less. The membrane constructed by titanate nanofibres and a layer of randomly oriented alumina nanofibres was able to filter out 96.8% of latex spheres of 60 nm size, while maintaining a high flux rate between 600 and 900 Lm–2 h–1, more than 15 times higher than the conventional membrane reported in the most recent study.
Resumo:
Organometallic porphyrins with a metal, metalloid or phosphorus fragment directly attached to their carbon framework emerged for the first time in 1976, and these macrocycles have been intensively investigated in the past decade. The present review summarises for the first time all reported examples as well as applications of these systems.
Resumo:
Four nickel carbonate-bearing minerals from Australia have been investigated to study the effect of Ni for Mg substitution. The spectra of nullaginite, zaratite, widgiemoolthalite and takovite show three main features in the range of 26,720–25,855 cm−1 (ν1-band), 15,230–14,740 cm−1 (ν2-band) and 9,200–9,145 cm−1 (ν3-band) which are characteristic of divalent nickel in six-fold coordination. The Crystal Field Stabilization Energy (CFSE) of Ni2+ in the four carbonates is calculated from the observed 3A2g(3F) → 3T2g(3F) transition. CFSE is dependent on mineralogy, crystallinity and chemical composition (Al/Mg-content). The splitting of the ν1- and ν3-bands and non-Gaussian shape of ν3-band in the minerals are the effects of Ni-site distortion from regular octahedral. The effect of structural cation substitutions (Mg2+, Ni2+, Fe2+ and trivalent cations, Al3+, Fe3+) in the carbonate minerals is noticed on band shifts. Thus, electronic bands in the UV–Vis–NIR spectra and the overtones and combination bands of OH and carbonate ion in NIR show shifts to higher wavenumbers, particularly for widgiemoolthalite and takovite.
Resumo:
The near-infrared (NIR) and infrared (IR) spectroscopy has been applied for characterisation of three complex Cu-Zn sulphate/phosphate minerals, namely ktenasite, orthoserpierite and kipushite. The spectral signatures of the three minerals are quite distinct in relation to their composition and structure. The effect of structural cations substitution (Zn2+ and Cu2+) on band shifts is significant both in the electronic and vibrational spectra of these Cu-Zn minerals. The variable Cu:Zn ratio between Zn-rich and Cu-rich compositions shows a strong effect on Cu(II) bands in the electronic spectra. The Cu(II) spectrum is most significant in kipushite (Cu-rich) with bands displayed at high wavenumbers at11390 and 7545 cm-1. The isomorphic substitution of Cu2+ for Zn2+ is reflected in the NIR and IR spectroscopic signatures. The multiple bands for 3 and 4 (SO4)2- stretching vibrations in ktenasite and orthoserpierite are attributed to the reduction of symmetry to the sulphate ion from Td to C2V. The IR spectrum of kipushite is characterised by strong (PO4)3- vibrational modes at 1090 and 990 cm-1. The range of IR absorption is higher in Ktenasite than in kipushite while it is intermediate in orthoserpierite.
Resumo:
Near infrared (NIR), X-ray diffraction (XRD) and infrared (IR) spectroscopy have been applied to halotrichites of the formula MgAl2(SO4)4∙22H2O, MnAl2(SO4)4∙22H2O and ZnAl2(SO4)4∙22H2O. Comparison of the halotrichites in different spectral regions has shown that the incorporation of a divalent transition metal into the halotrichite structure causes a shift in OH stretching band positions to lower wavenumbers. Therefore, an increase in hydrogen bonded water is observed for divalent cations with a larger molecular mass. XRD has confirmed the formation of halotrichite for all three samples and characteristic peaks of halotrichite have been identified at 18.5 and 24.5° 2θ, along with a group of six peaks between 5 and 15° 2θ. It has been observed that Mg-Al and Mn-Al halotrichite are very similar in structure, while Zn-Al showed several differences particularly in the NIR spectra. This work has shown that halotrichite structures can be synthesised and characterised by infrared and NIR spectroscopy.
Resumo:
Transition metal-free magnetism and half-metallicity recently has been the subject of intense research activity due to its potential in spintronics application. Here we, for the first time, demonstrate via density functional theory that the most recently experimentally realized graphitic carbon nitride (g-C4N3) displays a ferromagnetic ground state. Furthermore, this novel material is predicted to possess an intrinsic half-metallicity never reported to date. Our results highlight a new promising material toward realistic metal-free spintronics application.
Resumo:
Particles having at least regions of at least one metal oxide having nano-sized grains are produced by providing particles of a material having an initial, nonequiaxed particle shape, prepg. a mixt. of these particles and at last one metal oxide precursor, and treating the mixt. such that the precursor reacts with the particles. The process can be a co-pptn. process, sol-gel synthesis, micro-emulsion method, surfactant-based process, or a process that uses polymers. Complex metal oxide nanoparticles are produced by (a) prepg. a soln. contg. metal cations, (b) mixing the soln. with a surfactant to form micelles within the soln., and (c) heating the micellar liq. to form metal oxide and to remove the surfactant. The formed metal oxide particles have essentially the same morphol. (particle size and shape) as the initial morphol. of the material particles provided. [on SciFinder(R)]
Resumo:
A fuel additive comprising one or more complex oxides having a nominal compn. as set out in formula (1): AxB1-yMyOn; wherein A is selected from one or more group III elements including the lanthanide elements or one or more divalent or monovalent cations; B is selected from one or more elements with at. no. 22 to 24, 40 to 42 and 72 to 75; M is selected from one or more elements with at. no. 25 to 30; x is defined as a no. where 0 < x ≤ l; y is defined as a no. where 0 ≤ y < 0.5. [on SciFinder(R)]