8 resultados para TOPOGRAPHIES
em Queensland University of Technology - ePrints Archive
Resumo:
Functional communication training was used to replace multiply determined problem behaviour in two boys with autism. Experiment 1 involved a functional analysis of several topographies of problem behaviour using a variation of the procedures described by Iwata, Dorsey, Slifer, Bauman, and Richman. Results suggested that aggression, self-injury, and disruption were multiply determined (i.e., maintained by both attention and access to preferred objects). Experiment 2 involved a multiple-baseline design across subjects. The focus of intervention was to replace aggression, self-injury, and disruption with functionally equivalent communicative alternatives. Both boys were taught alternative “mands” to recruit attention and request preferred objects. Acquisition of these alternative communication skills was associated with concurrent decreases in aggression, self-injury, and disruption. Results suggest that multiply determined challenging behaviour can be decreased by teaching an alternative communication skill to replace each assessed function of the problem behaviour.
Resumo:
The Intention to Notice: the collection, the tour and ordinary landscapes is concerned with how ordinary landscapes and places are enabled and conserved through making itineraries that are framed around the ephemera encountered by chance, and the practices that make possible the endurance of these material traces. Through observing and then examining the material and temporal aspects of a variety of sites/places, the museum and the expanded garden are identified as spaces where the expression of contemporary political, ecological and social attitudes to cultural landscapes can be realised through a curatorial approach to design, to effect minimal intervention. Three notions are proposed to encourage investigation into contemporary cultural landscapes: To traverse slowly to allow space for speculations framed by the topographies and artefacts encountered; to [re]make/[re]write cultural landscapes as discursive landscapes that provoke the intention to notice; and to reveal and conserve the fabric of everyday places. A series of walking, recording and making projects undertaken across a variety of cultural landscapes in remote South Australia, Melbourne, Sydney, London, Los Angeles, Chandigarh, Padova and Istanbul, investigate how communities of practice are facilitated through the invitation to notice and intervene in ordinary landscapes, informed by the theory and practice of postproduction and the reticent auteur. This community of practice approach draws upon chance encounters and it seeks to encourage creative investigation into places. The Intention to Notice is a practice of facilitating that also leads to recording traces and events; large and small, material and immaterial, that encourages both conjecture and archive. Most importantly, there is an open-ended invitation to commit and exchange through design interaction.
Resumo:
An efficient numerical method to compute nonlinear solutions for two-dimensional steady free-surface flow over an arbitrary channel bottom topography is presented. The approach is based on a boundary integral equation technique which is similar to that of Vanden-Broeck's (1996, J. Fluid Mech., 330, 339-347). The typical approach for this problem is to prescribe the shape of the channel bottom topography, with the free-surface being provided as part of the solution. Here we take an inverse approach and prescribe the shape of the free-surface a priori while solving for the corresponding bottom topography. We show how this inverse approach is particularly useful when studying topographies that give rise to wave-free solutions, allowing us to easily classify eleven basic flow types. Finally, the inverse approach is also adapted to calculate a distribution of pressure on the free-surface, given the free-surface shape itself.
Resumo:
Objectives Titanium implant surfaces with modified topographies have improved osteogenic properties in vivo. However, the molecular mechanisms remain obscure. This study explored the signaling pathways responsible for the pro-osteogenic properties of micro-roughened (SLA) and chemically/nanostructurally (modSLA) modified titanium surfaces on human alveolar bone-derived osteoprogenitor cells (BCs) in vitro. Materials and methods The activation of stem cell signaling pathways (TGFβ/BMP, Wnt, FGF, Hedgehog, Notch) was investigated following early exposure (24 and 72 h) of BCs to SLA and modSLA surfaces in the absence of osteogenic cell culture supplements. Results Key regulatory genes from the TGFβ/BMP (TGFBR2, BMPR2, BMPR1B, ACVR1B, SMAD1, SMAD5), Wnt (Wnt/β-catenin and Wnt/Ca2+) (FZD1, FZD3, FZD5, LRP5, NFATC1, NFATC2, NFATC4, PYGO2, LEF1) and Notch (NOTCH1, NOTCH2, NOTCH4, PSEN1, PSEN2, PSENEN) pathways were upregulated on the modified surfaces. These findings correlated with a higher expression of osteogenic markers bone sialoprotein (IBSP) and osteocalcin (BGLAP), and bone differentiation factors BMP2, BMP6, and GDF15, as observed on the modified surfaces. Conclusions These findings demonstrate that the activation of the pro-osteogenic cell signaling pathways by modSLA and SLA surfaces leads to enhanced osteogenic differentiation as evidenced after 7 and 14 days culture in osteogenic media and provides a mechanistic insight into the superior osseointegration on the modified surfaces observed in vivo.
Resumo:
The possibility to control the morphology and nucleation density of quasi-one-dimensional, single-crystalline α -Fe2 O3 nanostructures by varying the electric potential of iron surfaces exposed to reactive oxygen plasmas is demonstrated experimentally. A systematic increase in the oxygen ion flux through rf biasing of otherwise floating substrates and then an additional increase of the ion/neutral density resulted in remarkable structural transformations of straight nanoneedles into nanowires with controlled tapering/aspect ratio and also in larger nucleation densities. Multiscale numerical simulations relate the microscopic ion flux topographies to the nanostructure nucleation and morphological evolution. This approach is applicable to other metal-oxide nanostructures.
Resumo:
Topographical cues can be exploited to regulate stem cell attachment, proliferation, differentiation and function in vitro and in vivo. In this study, we aimed to investigate the influence of different nanofibrous topographies on the chondrogenic differentiation potential of nasal septum derived progenitors (NSP) in vitro. Aligned and randomly oriented Ploy (L-lactide) (PLLA)/Polycaprolactone (PCL) hybrid scaffolds were fabricated via electrospinning. First, scaffolds were fully characterized, and then NSP were seeded on them to study their capacity to support stem cell attachment, proliferation and chondrogenic differentiation. Compared to randomly oriented nanofibers, aligned scaffolds showed a high degree of nanofiber alignment with much better tensile strength properties. Both scaffolds supported NSP adhesion, proliferation and chondrogenic differentiation. Despite the higher rate of cell proliferation on random scaffolds, a better chondrogenic differentiation was observed on aligned nanofibers as deduced from higher expression of chondrogenic markers such as collagen type II and aggrecan on aligned scaffolds. These findings demonstrate that electrospun constructs maintain NSP proliferation and differentiation, and that the aligned nanofibrous scaffolds can significantly enhance chondrogenic differentiation of nasal septum derived progenitors
Resumo:
Superhydrophobic polymers are particularly attractive materials, as they combine low cost, ease of processing, and compatibility with a variety of applications. Surfaces that display the Cassie–Baxter wetting state are particularly attractive for their self-cleaning properties. In this chapter, a brief overview of the wetting principles will be followed by an account of several techniques currently used to impart superhydrophobicity onto polymer surfaces. Surface roughness and surface structure will be the focus of this chapter, with an emphasis on topographies that exhibit microscale or nanoscale features arranged in hierarchical order.