3 resultados para THYSANOPTERA

em Queensland University of Technology - ePrints Archive


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Molecular and morphological data indicate that the pest thrips damaging Myoporum species in California and Hawai'i, Klambothrips myoporiMound and Morris, originated in Tasmania, Australia. This trans-Pacific dispersal presumably resulted from the international horticultural trade in Myoporum species. The data distinguish the pest from K. adelaideae sp.n. that induces leaf deformation on M. insulare along the coast of mainland Australia that is separated by ∼300km from Tasmania by the Bass Strait. K. myopori is more damaging to its non-native hosts in California and Hawai'i than to M. insulare in Tasmania, and further research is needed to determine if this is the result of release from its natural enemies. However, in certain areas of California, some Myoporum species are invasive weeds, and K. myopori may be considered an example of an accidental but beneficial introduction in this instance because of its detrimental impact on the plant species.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The species from Australia in the genera Carientothrips and Nesothrips are reviewed and an illustrated key is provided. Carientothrips is distinguished based on the unusual form of the maxillary palps. Two species, badius Hood comb.n. and capricornis Mound comb.n., are transferred to Nesothrips from Carientothrips; and Nesothrips melinus Mound syn.n. is synonymised with Carientothrips miskoi Mound. In Carientothrips the following six new species are described: alienatus sp.n., calami sp.n., horni sp.n., palumai sp.n., snowi sp.n., tasmanica sp.n.; while flavitibia Moulton stat.rev. is recalled from synonymy with C. mjobergi (Karny). In Nesothrips four new species are described: barrowi sp.n., brigalowi sp.n., coorongi sp.n., rossi sp.n.; while rhizophorae (Girault) syn.n. is placed as a synonym of minor Bagnall.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Research over the last two decades has significantly increased our understanding of the evolutionary position of the insects among other arthropods, and the relationships among the insect Orders. Many of these insights have been established through increasingly sophisticated analyses of DNA sequence data from a limited number of genes. Recent results have established the relationships of the Holometabola, but relationships among the hemimetabolous orders have been more difficult to elucidate. A strong consensus on the relationships among the Palaeoptera (Ephemeroptera and Odonata) and their relationship to the Neoptera has not emerged with all three possible resolutions supported by different data sets. While polyneopteran relationships generally have resisted significant resolution, it is now clear that termites, Isoptera, are nested within the cockroaches, Blattodea. The newly discovered order Mantophasmatodea is difficult to place with the balance of studies favouring Grylloblattodea as sister-group. While some studies have found the paraneopteran orders (Hemiptera, Thysanoptera, Phthiraptera and Psocoptera) monophyletic, evidence suggests that parasitic lice (Phthiraptera) have evolved from groups within the book and bark lice (Psocoptera), and may represent parallel evolutions of parasitism within two major louse groups. Within Holometabola, it is now clear that Hymenoptera are the sister to the other orders, that, in turn are divided into two clades, the Neuropteroidea (Coleoptera, Neuroptera and relatives) and the Mecopterida (Trichoptera, Lepidoptera, Diptera and their relatives). The enigmatic order Strepsiptera, the twisted wing insects, have now been placed firmly near Coleoptera, rejecting their close relationship to Diptera that was proposed some 15years ago primarily based on ribosomal DNA data. Phylogenomic-scale analyses are just beginning to be focused on the relationships of the insect orders, and this is where we expect to see resolution of palaeopteran and polyneopteran relationships. Future research will benefit from greater coordination between intra and inter-ordinal analyses. This will maximise the opportunities for appropriate outgroup choice at the intraordinal level and provide the background knowledge for the interordinal analyses to span the maximum phylogenetic scope within groups.