14 resultados para TESTIS
em Queensland University of Technology - ePrints Archive
Resumo:
The peritubular zone of the rat testis has an extensive extracellular matrix (ECM). Fibronectin (FN) is distributed primarily in the basal lamina of the seminiferous tubule boundary tissue and is synthesized by peritubular myoid cells. Several extracellular changes are mediated by growth factors and these changes occur at the time of hormone mediated testicular development, particularly in the peritubular zone. The effects of serum or dibutyryl cyclic AMP (cAMP) on FN production by the mesenchymal peritubular myoid cells were evaluated. Rats of various ages (10, 15, 20, 40 and 80 days) were employed for immunofluorescent localization of rat testicular FN in frozen sections. In all age groups tested, FN was primarily present in a broad layer around each seminiferous tubule, and blood vessel, and in variable distribution throughout the interstitial stroma. By day 20 there was no clear distinction in FN staining between the peritubular zone and the interstitial tissue. This indicates an involvement of FN in the ECM developments which occur in the peritubular zone of the testis at this time. The peritubular myoid cells were isolated from 20-22 day old rat testis and cultured on glass coverslips. These cells were grown to confluence with 10% fetal calf serum (FCS) in medium until day 4 and then subcultured to have secondary monocultures maintained with or without serum. By means of immunofluorescence and cytochemistry using avidin-biotin peroxidase complex it was observed that peritubular myoid cells were positive for FN and most of the FN was localized in the perinuclear region. Subcultured peritubular myoid cells maintained for 4 days in medium containing FCS developed an extensive interconnecting FN matrix. In the presence of 0.5 mM cAMP in culture, FN became localized along the filamentous process of peritubular myoid cells and more prominently in the areas of triangulated multi-cell aggregates as well as on the surface of the contracted small spherical cells. The addition of cAMP in the presence of FCS, also caused a noticeable change in the staining pattern; FN was detected along the filamentous process developing into a complex network of cells encased in an extensive matrix. It would appear that the translocation of FN in the cytoplasmic extensions of peritubular myoid cells may be a direct consequence of morphological changes associated with metabolic regulation of cAMP. This may also be related to the puberty associated development of in vivo changes in the ECM produced by peritubular myoid cells.
Resumo:
In studies of germ cell transplantation, measureing tubule diameters and counting cells from different populations using antibodies as markers are very important. Manual measurement of tubule sizes and cell counts is a tedious and sanity grinding work. In this paper, we propose a new boundary weighting based tubule detection method. We first enhance the linear features of the input image and detect the approximate centers of tubules. Next, a boundary weighting transform is applied to the polar transformed image of each tubule region and a circular shortest path is used for the boundary detection. Then, ellipse fitting is carried out for tubule selection and measurement. The algorithm has been tested on a dataset consisting of 20 images, each having about 20 tubules. Experiments show that the detection results of our algorithm are very close to the results obtained manually. © 2013 IEEE.
Resumo:
The last few years have seen dramatic advances in genomics, including the discovery of a large number of non-coding and antisense transcripts. This has revolutionised our understanding of multifaceted transcript structures found within gene loci and their roles in the regulation of development, neurogenesis and other complex processes. The recent and continuing surge of knowledge has prompted researchers to reassess and further dissect gene loci. The ghrelin gene (GHRL) gives rise to preproghrelin, which in turn produces ghrelin, a 28 amino acid peptide hormone that acts via the ghrelin receptor (growth hormone secretagogue receptor/GHSR 1a). Ghrelin has many important physiological and pathophysiological roles, including the stimulation of growth hormone (GH) release, appetite regulation, and cancer development. A truncated receptor splice variant, GHSR 1b, does not bind ghrelin, but dimerises with GHSR 1a, and may act as a dominant negative receptor. The gene products of ghrelin and its receptor are frequently overexpressed in human cancer While it is well known that the ghrelin axis (ghrelin and its receptor) plays a range of important functional roles, little is known about the molecular structure and regulation of the ghrelin gene (GHRL) and ghrelin receptor gene (GHSR). This thesis reports the re-annotation of the ghrelin gene, discovery of alternative 5’ exons and transcription start sites, as well as the description of a number of novel splice variants, including isoforms with a putative signal peptide. We also describe the discovery and characterisation of a ghrelin antisense gene (GHRLOS), and the discovery and expression of a ghrelin receptor (growth hormone secretagogue receptor/GHSR) antisense gene (GHSR-OS). We have identified numerous ghrelin-derived transcripts, including variants with extended 5' untranslated regions and putative secreted obestatin and C-ghrelin transcripts. These transcripts initiate from novel first exons, exon -1, exon 0 and a 5' extended 1, with multiple transcription start sites. We used comparative genomics to identify, and RT-PCR to experimentally verify, that the proximal exon 0 and 5' extended exon 1 are transcribed in the mouse ghrelin gene, which suggests the mouse and human proximal first exon architecture is conserved. We have identified numerous novel antisense transcripts in the ghrelin locus. A candidate non-coding endogenous natural antisense gene (GHRLOS) was cloned and demonstrates very low expression levels in the stomach and high levels in the thymus, testis and brain - all major tissues of non-coding RNA expression. Next, we examined if transcription occurs in the antisense orientation to the ghrelin receptor gene, GHSR. A novel gene (GHSR-OS) on the opposite strand of intron 1 of the GHSR gene was identified and characterised using strand-specific RT-PCR and rapid amplification of cDNA ends (RACE). GHSR-OS is differentially expressed and a candidate non-coding RNA gene. In summary, this study has characterised the ghrelin and ghrelin receptor loci and demonstrated natural antisense transcripts to ghrelin and its receptor. Our preliminary work shows that the ghrelin axis generates a broad and complex transcriptional repertoire. This study provides the basis for detailed functional studies of the the ghrelin and GHSR loci and future studies will be needed to further unravel the function, diagnostic and therapeutic potential of the ghrelin axis.
Resumo:
In rats immunized systemically with tetanus toxoid the concentration of specific anti-tetanus-toxoid-specific IgG in fluid from the rete testis and cauda epididymidis were respectively 0.6% and 1.4% the concentration in blood serum. The extratesticular duct system reabsorbed 97% of the IgG and 99% of the fluid leaving the rete, but estradiol administration affected the site of reabsorption. In untreated rats, the ductuli efferentes reabsorbed 94% of the IgG and 96% of the fluid leaving the rete, whereas estradiol-treated rats reabsorbed 83% of the IgG and 86% of the fluid, and the ductus epididymidis fully compensated for these different effects of estradiol on the ductuli efferentes. The concentrations of IgG in secretions of the seminal vesicles and prostate gland were lower (0.1% and 0.3% respectively of the titers in blood serum) than in fluids from the extratesticular ducts, and were not affected by the administration of estradiol. RT-PCR showed that Fcgrt (neonatal Fc receptor, also known as FcRn) is expressed in the reproductive ducts, where IgG is probably transported across epithelium, being particularly strong in the ductuli efferentes (where most IgG was reabsorbed) and distal caput epididymidis. It is concluded that IgG enters the rete testis and is concentrated only 2.5-fold along the extratesticular duct system, unlike spermatozoa, which are concentrated 95-fold. Further, the ductus epididymidis can recognize and compensate for changes in function of the ductuli efferentes.
Resumo:
People living with lymphohematopoietic neoplasms (LHNs) are known to have increased risks of second cancer; however, the incidence of second cancers after LHNs has not been studied extensively in Australia. The Australian Cancer Database was used to analyze site-specific risk of second primary cancer after LHNs in 127,707 patients diagnosed between 1983 and 2005. Standardized incidence ratios (SIRs) were calculated using population rates. Overall, patients with an LHN had nearly twice the risk of developing a second cancer compared to the Australian population. Among 40,321 patients with non-Hodgkin's lymphoma (NHL), there was over a fourfold significant increase in melanoma, Kaposi sarcoma, cancer of the lip, connective tissue and peripheral nerves, eye, thyroid, Hodgkin's disease (HD) and myeloid leukemia. Among 6,396 patients with HD, there was over a fourfold significant increase in melanoma, Kaposi sarcoma, cancer of the lip, oral cavity and pharynx, female breast, uterine cervix, testis, thyroid, NHL and myeloid leukemia. Among the 33,025 patients with lymphoid and myeloid leukemia, significant excess were seen for cancers of the lip, eye, connective tissue and peripheral nerves, NHL and HD. Among the 13,856 patients with plasma cell tumors, there was over fourfold significant increase for melanoma, cancer of the connective tissue and peripheral nerves and myeloid leukemia. Our findings provide evidence of an increased risk of cancer, particularly ultraviolet radiation- and immunosuppression-related cancers, after an LHN in Australia. Copyright © 2010 UICC.
Resumo:
Prostate cancer (CaP) is the most commonly diagnosed cancer in males in Australia, North America, and Europe. If found early and locally confined, CaP can be treated with radical prostatectomy or radiation therapy; however, 25-40% patients will relapse and go on to advanced disease. The most common therapy in these cases is androgen deprivation therapy (ADT), which suppresses androgen production from the testis. Lack of the testicular androgen supply causes cells of the prostate to undergo apoptosis. However, in some cases the regression initially seen with ADT eventually gives way to a growth of a population of cancerous cells that no longer require testicular androgens. This phenotype is essentially fatal and is termed castrate resistant prostate cancer (CRPC). In addition to eventual regression, there are many undesirable side effects which accompany ADT, including development of a metabolic syndrome, which is defined by the U.S. National Library of Medicine as “a combination of medical disorders that increase the risk of developing cardiovascular disease and diabetes.” This project will focus on the effect of ADT induced hyperinsulinemia, as mimicked by treating androgen receptor positive CaP cells with insulin in a serum (hormone) deprived environment. While this side effect is not widely explored, in this thesis it is demonstrated for the first time that insulin upregulates pathways important to CaP progression. Our group has previously shown that during CaP progression, the enzymes necessary for de novo steroidogenesis are upregulated in the LNCaP xenograft model, total steroid levels are increased in tumours compared to pre castrate levels, and de novo steroidogenesis from radio-labelled acetate has been demonstrated. Because of the CaP dependence on AR for survival, we and other groups believe that CaP cells carry out de novo steroidogenesis to survive in androgen deprived conditions. Because (a) men on ADT often develop metabolic syndrome, and (b) men with lifestyle-induced obesity and hyperinsulinemia have worse prognosis and faster disease progression, and because (c) insulin causes steroidogenesis in other cell lines, the hypothesis that insulin may contribute to CaP progression through upregulation of steroidogenesis was explored. Insulin upregulates steroidogenesis enzymes at the mRNA level in three AR positive cell lines, as well as upregulating these enzymes at the protein level in two cell lines. It has also been demonstrated that insulin increases mitochondrial (functional) levels of steroid acute regulatory protein (StAR). Furthermore, insulin causes increased levels of total steroids in and induction of de novo steroid synthesis by insulin has been demonstrated at levels induced sufficient to activate AR. The effect of insulin analogs on CaP steroidogenesis in LNCaP and VCaP cells has also been investigated because epidemiological studies suggest that some of the analogs developed may have more cancer stimulatory effects than normal insulin. In this project, despite the signalling differences between glargine, X10, and insulin, these analogs did not appear to induce steroidogenesis any more potently that normal insulin. The effect of insulin of MCF7breast cancer cells was also investigated with results suggesting that breast cancer cells may be capable of de novo steroidogenesis, and that increase in estradiol production may be exacerbated by insulin. Insulin has also been long known to stimulate lipogenesis in the liver and adipocytes, and has been demonstrated to increase lipogenesis in breast cancer cells; therefore, investigation of the effect of insulin on lipogenesis, which is a hallmark of aggressive cancers, was investigated. In CaP progression sterol regulatory element binding protein (SREBP) is dysregulated and upregulates fatty acid synthase (FASN), acetyl CoA-carboxylase, and other lipogenesis genes. SREBP is important for steroidogenesis and in this project has been shown to be upregulated by insulin in CaP cells. Fatty acid synthesis provides building blocks of membrane growth, provides substrates for acid oxidation, the main energy source for CaP cells, provides building blocks for anti-apoptotic and proinflammatory molecules, and provides molecules that stimulate steroidogenesis. In this project it has been shown that insulin upregulates FASN and ACC, which synthesize fatty acids, as well as upregulating hormone sensitive lipase (HSL), diazepam-binding inhibitor (DBI), and long-chain acyl-CoA synthetase 3 (ACSL3), which contribute to lipid activation of steroidogenesis. Insulin also upregulates total lipid levels and de novo lipogenesis, which can be suppressed by inhibition of the insulin receptor (INSR). The fatty acids synthesized after insulin treatment are those that have been associated with CaP; furthermore, microarray data suggests insulin may upregulate fatty acid biosynthesis, metabolism and arachidonic acid metabolism pathways, which have been implicated in CaP growth and survival. Pharmacological agents used to treat patients with hyperinsulinemia/ hyperlipidemia have gained much interest in regards to CaP risk and treatment; however, the scientific rationale behind these clinical applications has not been examined. This thesis explores whether the use of metformin or simvastatin would decrease either lipogenesis or steroidogenesis or both in CaP cells. Simvastatin is a 3-hydroxy-3-methylglutaryl-CoA reductase (HMGR) inhibitor, which blocks synthesis of cholesterol, the building block of steroids/ androgens. It has also been postulated to down regulate SREBP in other metabolic disorders. It has been shown in this thesis, in LNCaP cells, that simvastatin inhibited and decreased insulin induced steroidogenesis and lipogenesis, respectively, but increased these pathways in the absence of insulin. Conversely, metformin, which activates AMP-activated protein kinase (AMPK) to shut down lipogenesis, cholesterol synthesis, and protein synthesis, highly suppresses both steroidogenesis and lipogenesis in the presence and absence of insulin. Lastly, because it has been demonstrated to increase steroidogenesis in other cell lines, and because the elucidation of any factors affecting steroidogenesis is important to understanding CaP, the effect of IGF2 on steroidogenesis in CaP cells was investigated. In patient samples, as men progress to CRPC, IGF2 mRNA and the protein levels of the receptors it may signal through are upregulated. It has also been demonstrated that IGF2 upregulates steroidogenic enzymes at both the mRNA and protein levels in LNCaP cells, increases intracellular and secreted steroid/androgen levels in LNCaPs to levels sufficient to stimulate the AR, and upregulated de novo steroidogenesis in LNCaPs and VCaPs. As well, inhibition of INSR and insulin-like growth factor 1 receptor (IGF1R), which IGF2 signals through, suggests that induction of steroidogenesis may be occurring predominantly through IGF1R. In summary, this project has illuminated for the first time that insulin is likely to play a large role in cancer progression, through upregulation of the steroidogenesis and lipogenesis pathways at the mRNA and protein levels, and production levels, and demonstrates a novel role for IGF-II in CaP progression through stimulation of steroidogenesis. It has also been demonstrated that metformin and simvastatin drugs may be useful in suppressing the insulin induction of these pathways. This project affirms the pathways by which ADT- induced metabolic syndrome may exacerbate CaP progression and strongly suggests that the monitoring and modulation of the metabolic state of CaP patients could have a strong impact on their therapeutic outcomes.
Resumo:
Ghrelin is a multifunctional hormone, with roles in stimulating appetite and regulating energy balance, insulin secretion and glucose homeostasis. The ghrelin gene locus (GHRL) is highly complex and gives rise to a range of novel transcripts derived from alternative first exons and internally spliced exons. The wild-type transcript encodes a 117 amino acid preprohormone that is processed to yield the 28 amino acid peptide ghrelin. Here, we identified insulin-responsive transcription corresponding to cryptic exons in intron 2 of the human ghrelin gene. A transcript, termed in2c-ghrelin (intron 2-cryptic), was cloned from the testis and the LNCaP prostate cancer cell line. This transcript may encode an 83 AA preproghrelin isoform that codes for the ghrelin, but not obestatin. It is expressed in a limited number of normal tissues and in tumours of the prostate, testis, breast and ovary. Finally, we confirmed that in2c-ghrelin transcript expression, as well as the recently described in1-ghrelin transcript, is significantly upregulated by insulin in cultured prostate cancer cells. Metabolic syndrome and hyperinsulinaemia has been associated with prostate cancer risk and progression. This may be particularly significant after androgen deprivation therapy for prostate cancer, which induces hyperinsulinaemia, and this could contribute to castrate resistant prostate cancer growth. We have previously demonstrated that ghrelin stimulates prostate cancer cell line proliferation in vitro. This study is the first description of insulin regulation of a ghrelin transcript in cancer, and should provide further impetus for studies into the expression, regulation and function of ghrelin gene products.
Resumo:
Metabolic cooperation mediated by secreted factors between Sertoli cells and peritubular myoid cells has been well documented. We have confirmed that factors secreted by peritubular myoid cells modulate androgen-binding protein (ABP) secretion by Sertoli cells and shown further that this can also be achieved with peritubular myoid cell extracellular matrix (ECM). While peritubular myoid cell ECM potentiated the stimulatory effect of dibutyryl cyclic AMP on Sertoli cell ABP secretion, secreted factors did not, suggesting that the two components influence Sertoli cells through distinct mechanisms. We also tested other factors and other cell lines for effects on ABP production by Sertoli cells. The addition of human plasma fibronectin or conditioned medium from the basement membrane-producing Englebreth-Holm- Swarm sarcoma also stimulated ABP secretion by Sertoli cells. Cocultures of epithelial Sertoli cells with the cells of mesenchymal origin, such as testicular peritubular myoid cells, embryonic skin fibroblasts, and bladder smooth muscle cells, significantly stimulated ABP secretion by Sertoli cells, but co-culture with the epithelial-derived Martin-Darby canine kidney cell line had no effect on Sertoli cell-secreted ABP levels. Our data further define the epithelial-mesenchymal cell interaction that exists between Sertoli cells and peritubular myoid cells in the mammalian testis.
Resumo:
To determine whether Sertoli cells influence DNA synthesis by rat peritubular myoid cells in vitro, the effects of Sertoli cells on [3H]thymidine incorporation by peritubular myoid cells in a coculture situation were examined. Incubation of testicular peritubular myoid cells with Sertoli cells in coculture induced a significant increase in [3H]thymidine incorporation by peritubular myoid cells. This indicates a cell-cell cooperation between Sertoli and peritubular myoid cells in the testis in terms of DNA synthesis. Secreted factors from Sertoli cells, as tested in a parabiotic culture situation, also increased [3H]thymidine incorporation by peritubular myoid cells. Moreover, in terms of total cellular protein, cocultures of Sertoli cells and peritubular myoid cells resulted in a significant increase when compared with the monocultures, and this coculture effect substituted for the stimulatory response of serum on peritubular myoid cell monoculture. This study investigated the cooperative role of Sertoli cells and peritubular myoid cells in paracrine regulation of testicular functions.
Resumo:
The incorporation of 3H-proline into protein was regarded as a measure of total protein synthesis and the incorporation into hydroxyproline as indicative of collagen synthesis. Relative collagen synthesis (expressed as percent of total protein synthesized) by Sertoli and peritubular myoid cells cultured from 20-22 day old rat testis was estimated. In both secreted and cellular pools, relative collagen synthesis by Sertoli cells was significantly greater than by peritubular myoid cells. Coculture of Sertoli and myoid cells resulted in a significant increase in relative collagen synthesis when compared to monocultures of each cell type. Addition of serum to peritubular myoid cells resulted in a stronger stimulation of relative collagen production. Sertoli cell extracellular matrix inhibited relative collagen synthesis by peritubular myoid cells in the presence or absence of serum. Radioactivity into hydroxyproline as corrected per cellular DNA also showed similar results. Immunolocalization studies confirmed that both cell types synthesize type I and type IV collagens. These results indicate that stimulation of collagen synthesis observed in Sertoli-myoid cell cocultures is due to humoral interactions, rather than extracellular matrix, and Sertoli cell extracellular matrix regulates serum-induced increase in collagen synthesis by peritubular myoid cells.
Resumo:
Severely reduced fertility is a common finding in cystic fibrosis (CF). We used in situ hybridization to examine the cell-specific expression of CFTR in the reproductive organs of rodents. In males CFTR mRNA is found in the round spermatids (spermatogenic stages V-X) and in the principal cells that line the initial segment of the epididymis. In both the testis and the epididymis, CFTR expression is developmentally regulated suggesting that the defect in the genital tract of male CF patients is of developmental origin. CFTR expression in the luminal and glandular epithelium of the uterus is regulated during the oestrous cycle and is maximal at pro-oestrus. Our results provide a biological rationale for the reduced fertility of CF patients, and suggest a possible cause for the comparatively poorer prognosis for women with CF.
Resumo:
The coffee components kahweol and cafestol (K/C) have been reported to protect the colon and other organs of the rat against the formation of DNA adducts by 2-amino-1-methyl-6-phenylimidazo[4,5-b] pyridine (PhIP) and aflatoxin B1. PhIP is a cooked-food mutagen to which significant human exposure and a role in colon cancer etiology are attributed, and, interestingly, such cancers appear to develop at a lower rate in consumers of coffees with high amounts of K/C. Earlier studies in rodent liver have shown that a key role in the chemopreventive effect of K/C is likely to be due to the potential of these compounds to induce the detoxification of xenobiotics by glutathione transferase (GST) and to enhance the synthesis of the corresponding co-factor glutathione. However, mutagens like PhIP may also be detoxified by UDP-glucuronosyl transferase (UDPGT) for which data are lacking regarding a potential effect of K/C. Therefore, in the present study, we investigated the effect of K/C on UDPGT and, concomitantly, we studied overall GST and the pattern of individual GST classes, particularly GST-θ, which was not included in earlier experiments. In addition, we analyzed the organ-dependence of these potentially chemopreventive effects. K/C was fed to male F344 rats at 0.122% in the chow for 10 days. Enzyme activities in liver, kidney, lung, colon, salivary gland, pancreas, testis, heart and spleen were quantified using five characteristic substrates and the hepatic protein pattern of GST classes α, μ, and π was studied with affnity chromatography/HPLC. Our study showed that K/C is not only capable of increasing overall GST and GST classes α, μ, and π but also of enhancing UDGPT and GST-θ. All investigated K/C effects were strongest in liver and kidney, and some response was seen in lung and colon but none in the other organs. In summary, our results show that K/C treatment leads to a wide spectrum of increases in phase II detoxification enzymes. Notably, these effects occurred preferentially in the well perfused organs liver and kidney, which may thus not only contribute to local protection but also to anti-carcinogenesis in distant, less stimulated organs such as the colon.
Resumo:
Mutations of UDP-N-acetyl-alpha-D-galactosamine polypeptide N-acetyl galactosaminyl transferase 3 (GALNT3) result in familial tumoural calcinosis (FTC) and the hyperostosis-hyperphosphataemia syndrome (HHS), which are autosomal recessive disorders characterised by soft-tissue calcification and hyperphosphataemia. To facilitate in vivo studies of these heritable disorders of phosphate homeostasis, we embarked on establishing a mouse model by assessing progeny of mice treated with the chemical mutagen N-ethyl-N-nitrosourea (ENU), and identified a mutant mouse, TCAL, with autosomal recessive inheritance of ectopic calcification, which involved multiple tissues, and hyperphosphataemia; the phenotype was designated TCAL and the locus, Tcal. TCAL males were infertile with loss of Sertoli cells and spermatozoa, and increased testicular apoptosis. Genetic mapping localized Tcal to chromosome 2 (62.64-71.11 Mb) which contained the Galnt3. DNA sequence analysis identified a Galnt3 missense mutation (Trp589Arg) in TCAL mice. Transient transfection of wild-type and mutant Galnt3-enhanced green fluorescent protein (EGFP) constructs in COS-7 cells revealed endoplasmic reticulum retention of the Trp589Arg mutant and Western blot analysis of kidney homogenates demonstrated defective glycosylation of Galnt3 in Tcal/Tcal mice. Tcal/Tcal mice had normal plasma calcium and parathyroid hormone concentrations; decreased alkaline phosphatase activity and intact Fgf23 concentrations; and elevation of circulating 1,25-dihydroxyvitamin D. Quantitative reverse transcriptase-PCR (qRT-PCR) revealed that Tcal/Tcal mice had increased expression of Galnt3 and Fgf23 in bone, but that renal expression of Klotho, 25-hydroxyvitamin D-1α-hydroxylase (Cyp27b1), and the sodium-phosphate co-transporters type-IIa and -IIc was similar to that in wild-type mice. Thus, TCAL mice have the phenotypic features of FTC and HHS, and provide a model for these disorders of phosphate metabolism. © 2012 Esapa et al.