35 resultados para Synchronization
em Queensland University of Technology - ePrints Archive
Resumo:
Precise clock synchronization is essential in emerging time-critical distributed control systems operating over computer networks where the clock synchronization requirements are mostly focused on relative clock synchronization and high synchronization precision. Existing clock synchronization techniques such as the Network Time Protocol (NTP) and the IEEE 1588 standard can be difficult to apply to such systems because of the highly precise hardware clocks required, due to network congestion caused by a high frequency of synchronization message transmissions, and high overheads. In response, we present a Time Stamp Counter based precise Relative Clock Synchronization Protocol (TSC-RCSP) for distributed control applications operating over local-area networks (LANs). In our protocol a software clock based on the TSC register, counting CPU cycles, is adopted in the time clients and server. TSC-based clocks offer clients a precise, stable and low-cost clock synchronization solution. Experimental results show that clock precision in the order of 10~microseconds can be achieved in small-scale LAN systems. Such clock precision is much higher than that of a processor's Time-Of-Day clock, and is easily sufficient for most distributed real-time control applications over LANs.
Resumo:
The over represented number of novice drivers involved in crashes is alarming. Driver training is one of the interventions aimed at mitigating the number of crashes that involve young drivers. To our knowledge, Advanced Driver Assistance Systems (ADAS) have never been comprehensively used in designing an intelligent driver training system. Currently, there is a need to develop and evaluate ADAS that could assess driving competencies. The aim is to develop an unsupervised system called Intelligent Driver Training System (IDTS) that analyzes crash risks in a given driving situation. In order to design a comprehensive IDTS, data is collected from the Driver, Vehicle and Environment (DVE), synchronized and analyzed. The first implementation phase of this intelligent driver training system deals with synchronizing multiple variables acquired from DVE. RTMaps is used to collect and synchronize data like GPS, vehicle dynamics and driver head movement. After the data synchronization, maneuvers are segmented out as right turn, left turn and overtake. Each maneuver is composed of several individual tasks that are necessary to be performed in a sequential manner. This paper focuses on turn maneuvers. Some of the tasks required in the analysis of ‘turn’ maneuver are: detect the start and end of the turn, detect the indicator status change, check if the indicator was turned on within a safe distance and check the lane keeping during the turn maneuver. This paper proposes a fusion and analysis of heterogeneous data, mainly involved in driving, to determine the risk factor of particular maneuvers within the drive. It also explains the segmentation and risk analysis of the turn maneuver in a drive.
Resumo:
Sustainable development is about making societal investments. These investments should be in synchronization with the natural environment, trends of social development, as well as organisational and local economies over a long time span. Traditionally in the eyes of clients, project development will need to produce the required profit margins, with some degrees of consideration for other impacts. This is being changed as all citizens of our society are becoming more aware of concepts and challenges such as the climate change, greenhouse footprints, and social dimensions of sustainability, and will in turn demand answers to these issues in built facilities. A large number of R&D projects have focused on the technical advancement and environmental assessment of products and built facilities. It is equally important address the cost/benefit issue, as developers in the world would not want to loose money by investing in built assets. For infrastructure projects, due to its significant cost of development and lengthy delivery time, presenting the full money story of going green is of vital importance. Traditional views of life-cycle costing tend to focus on the pure economics of a construction project. Sustainability concepts are not broadly integrated with the current LCCA in the construction sector. To rectify this problem, this paper reports on the progress to date of developing and extending contemporary LCCA models in the evaluation of road infrastructure sustainability. The suggested new model development is based on sustainability indicators identified through previous research, and incorporating industry verified cost elements of sustainability measures. The on-going project aims to design and a working model for sustainability life-cycle costing analysis for this type of infrastructure projects.
Resumo:
A trend in design and implementation of modern industrial automation systems is to integrate computing, communication and control into a unified framework at different levels of machine/factory operations and information processing. These distributed control systems are referred to as networked control systems (NCSs). They are composed of sensors, actuators, and controllers interconnected over communication networks. As most of communication networks are not designed for NCS applications, the communication requirements of NCSs may be not satisfied. For example, traditional control systems require the data to be accurate, timely and lossless. However, because of random transmission delays and packet losses, the control performance of a control system may be badly deteriorated, and the control system rendered unstable. The main challenge of NCS design is to both maintain and improve stable control performance of an NCS. To achieve this, communication and control methodologies have to be designed. In recent decades, Ethernet and 802.11 networks have been introduced in control networks and have even replaced traditional fieldbus productions in some real-time control applications, because of their high bandwidth and good interoperability. As Ethernet and 802.11 networks are not designed for distributed control applications, two aspects of NCS research need to be addressed to make these communication networks suitable for control systems in industrial environments. From the perspective of networking, communication protocols need to be designed to satisfy communication requirements for NCSs such as real-time communication and high-precision clock consistency requirements. From the perspective of control, methods to compensate for network-induced delays and packet losses are important for NCS design. To make Ethernet-based and 802.11 networks suitable for distributed control applications, this thesis develops a high-precision relative clock synchronisation protocol and an analytical model for analysing the real-time performance of 802.11 networks, and designs a new predictive compensation method. Firstly, a hybrid NCS simulation environment based on the NS-2 simulator is designed and implemented. Secondly, a high-precision relative clock synchronization protocol is designed and implemented. Thirdly, transmission delays in 802.11 networks for soft-real-time control applications are modeled by use of a Markov chain model in which real-time Quality-of- Service parameters are analysed under a periodic traffic pattern. By using a Markov chain model, we can accurately model the tradeoff between real-time performance and throughput performance. Furthermore, a cross-layer optimisation scheme, featuring application-layer flow rate adaptation, is designed to achieve the tradeoff between certain real-time and throughput performance characteristics in a typical NCS scenario with wireless local area network. Fourthly, as a co-design approach for both a network and a controller, a new predictive compensation method for variable delay and packet loss in NCSs is designed, where simultaneous end-to-end delays and packet losses during packet transmissions from sensors to actuators is tackled. The effectiveness of the proposed predictive compensation approach is demonstrated using our hybrid NCS simulation environment.
Resumo:
A microgrid may be supplied from inertial (rotating type) and non-inertial (converter-interfaced) distributed generators (DGs). However the dynamic response of these two types of DGs is different. Inertial DGs have a slower response due to their governor characteristics while non inertial DGs have the ability to respond very quickly. The focus of this paper is to propose better controls using droop characteristics to improve the dynamic interaction between different DG types in an autonomous microgrid. The transient behavior of DGs in the microgrid is investigated during the DG synchronization and load changes. Power sharing strategies based on frequency and voltage droop are considered for DGs. Droop control strategies are proposed for DGs to improve the smooth synchronization and dynamic power sharing minimizing transient oscillations in the microgrid. Simulation studies are carried out on PSCAD for validation.
Resumo:
This paper proposes a comprehensive approach to the planning of distribution networks and the control of microgrids. Firstly, a Modified Discrete Particle Swarm Optimization (MDPSO) method is used to optimally plan a distribution system upgrade over a 20 year planning period. The optimization is conducted at different load levels according to the anticipated load duration curve and integrated over the system lifetime in order to minimize its total lifetime cost. Since the optimal solution contains Distributed Generators (DGs) to maximize reliability, the DG must be able to operate in islanded mode and this leads to the concept of microgrids. Thus the second part of the paper reviews some of the challenges of microgrid control in the presence of both inertial (rotating direct connected) and non-inertial (converter interfaced) DGs. More specifically enhanced control strategies based on frequency droop are proposed for DGs to improve the smooth synchronization and real power sharing minimizing transient oscillations in the microgrid. Simulation studies are presented to show the effectiveness of the control.
Resumo:
Purpose: Experimental measurements have been made to investigate meaning of the change in voltage for the pulse gas metal arc welding (GMAW-P) process operating under different drop transfer modes. Design/methodology/approach: Welding experiments with different values of pulsing parameter and simultaneous recording of high speed camera pictures and welding signals (such as current and voltage) were used to identify different drop transfer modes in GMAW-P. The investigation is based on the synchronization of welding signals and high speed camera to study the behaviour of voltage signal under different drop transfer modes. Findings: The results reveal that the welding arc is significantly affected by the molten droplet detachment. In fact, results indicate that sudden increase and drop in voltage just before and after the drop detachment can be used to characterize the voltage behaviour of different drop transfer mode in GMAW-P. Research limitations/implications: The results show that voltage signal carry rich information about different drop transfer occurring in GMAW-P. Hence it’s possible to detect different drop transfer modes. Future work should concentrate on development of filters for detection of different drop transfer modes. Originality/value: Determination of drop transfer mode with GMAW-P is crucial for the appropriate selection of pulse welding parameters. As change in drop transfer mode results in poor weld quality in GMAW-P, so in order to estimate the working parameters and ensure stable GMAW-P understanding the voltage behaviour of different drop transfer modes in GMAW-P will be useful. However, in case of GMAW-P hardly any attempt is made to analyse the behaviour of voltage signal for different drop transfer modes. This paper analyses the voltage signal behaviour of different drop transfer modes for GMAW-P.
Resumo:
Many substation applications require accurate time-stamping. The performance of systems such as Network Time Protocol (NTP), IRIG-B and one pulse per second (1-PPS) have been sufficient to date. However, new applications, including IEC 61850-9-2 process bus and phasor measurement, require accuracy of one microsecond or better. Furthermore, process bus applications are taking time synchronisation out into high voltage switchyards where cable lengths may have an impact on timing accuracy. IEEE Std 1588, Precision Time Protocol (PTP), is the means preferred by the smart grid standardisation roadmaps (from both the IEC and US National Institute of Standards and Technology) of achieving this higher level of performance, and integrates well into Ethernet based substation automation systems. Significant benefits of PTP include automatic path length compensation, support for redundant time sources and the cabling efficiency of a shared network. This paper benchmarks the performance of established IRIG-B and 1-PPS synchronisation methods over a range of path lengths representative of a transmission substation. The performance of PTP using the same distribution system is then evaluated and compared to the existing methods to determine if the performance justifies the additional complexity. Experimental results show that a PTP timing system maintains the synchronising performance of 1-PPS and IRIG-B timing systems, when using the same fibre optic cables, and further meets the needs of process buses in large substations.
Resumo:
New substation automation applications, such as sampled value process buses and synchrophasors, require sampling accuracy of 1 µs or better. The Precision Time Protocol (PTP), IEEE Std 1588, achieves this level of performance and integrates well into Ethernet based substation networks. This paper takes a systematic approach to the performance evaluation of commercially available PTP devices (grandmaster, slave, transparent and boundary clocks) from a variety of manufacturers. The ``error budget'' is set by the performance requirements of each application. The ``expenditure'' of this error budget by each component is valuable information for a system designer. The component information is used to design a synchronization system that meets the overall functional requirements. The quantitative performance data presented shows that this testing is effective and informative. Results from testing PTP performance in the presence of sampled value process bus traffic demonstrate the benefit of a ``bottom up'' component testing approach combined with ``top down'' system verification tests. A test method that uses a precision Ethernet capture card, rather than dedicated PTP test sets, to determine the Correction Field Error of transparent clocks is presented. This test is particularly relevant for highly loaded Ethernet networks with stringent timing requirements. The methods presented can be used for development purposes by manufacturers, or by system integrators for acceptance testing. A sampled value process bus was used as the test application for the systematic approach described in this paper. The test approach was applied, components were selected, and the system performance verified to meet the application's requirements. Systematic testing, as presented in this paper, is applicable to a range of industries that use, rather than develop, PTP for time transfer.
Resumo:
Advanced substation applications, such as synchrophasors and IEC 61850-9-2 sampled value process buses, depend upon highly accurate synchronizing signals for correct operation. The IEEE 1588 Precision Timing Protocol (PTP) is the recommended means of providing precise timing for future substations. This paper presents a quantitative assessment of PTP reliability using Fault Tree Analysis. Two network topologies are proposed that use grandmaster clocks with dual network connections and take advantage of the Best Master Clock Algorithm (BMCA) from IEEE 1588. The cross-connected grandmaster topology doubles reliability, and the addition of a shared third grandmaster gives a nine-fold improvement over duplicated grandmasters. The performance of BMCA mediated handover of the grandmaster role during contingencies in the timing system was evaluated experimentally. The 1 µs performance requirement of sampled values and synchrophasors are met, even during network or GPS antenna outages. Slave clocks are shown to synchronize to the backup grandmaster in response to degraded performance or loss of the main grandmaster. Slave disturbances are less than 350 ns provided the grandmaster reference clocks are not offset from one another. A clear understanding of PTP reliability and the factors that affect availability will encourage the adoption of PTP for substation time synchronization.
Resumo:
Theoretical foundations of higher order spectral analysis are revisited to examine the use of time-varying bicoherence on non-stationary signals using a classical short-time Fourier approach. A methodology is developed to apply this to evoked EEG responses where a stimulus-locked time reference is available. Short-time windowed ensembles of the response at the same offset from the reference are considered as ergodic cyclostationary processes within a non-stationary random process. Bicoherence can be estimated reliably with known levels at which it is significantly different from zero and can be tracked as a function of offset from the stimulus. When this methodology is applied to multi-channel EEG, it is possible to obtain information about phase synchronization at different regions of the brain as the neural response develops. The methodology is applied to analyze evoked EEG response to flash visual stimulii to the left and right eye separately. The EEG electrode array is segmented based on bicoherence evolution with time using the mean absolute difference as a measure of dissimilarity. Segment maps confirm the importance of the occipital region in visual processing and demonstrate a link between the frontal and occipital regions during the response. Maps are constructed using bicoherence at bifrequencies that include the alpha band frequency of 8Hz as well as 4 and 20Hz. Differences are observed between responses from the left eye and the right eye, and also between subjects. The methodology shows potential as a neurological functional imaging technique that can be further developed for diagnosis and monitoring using scalp EEG which is less invasive and less expensive than magnetic resonance imaging.
Resumo:
The use of Wireless Sensor Networks (WSNs) for Structural Health Monitoring (SHM) has become a promising approach due to many advantages such as low cost, fast and flexible deployment. However, inherent technical issues such as data synchronization error and data loss have prevented these distinct systems from being extensively used. Recently, several SHM-oriented WSNs have been proposed and believed to be able to overcome a large number of technical uncertainties. Nevertheless, there is limited research verifying the applicability of those WSNs with respect to demanding SHM applications like modal analysis and damage identification. This paper first presents a brief review of the most inherent uncertainties of the SHM-oriented WSN platforms and then investigates their effects on outcomes and performance of the most robust Output-only Modal Analysis (OMA) techniques when employing merged data from multiple tests. The two OMA families selected for this investigation are Frequency Domain Decomposition (FDD) and Data-driven Stochastic Subspace Identification (SSI-data) due to the fact that they both have been widely applied in the past decade. Experimental accelerations collected by a wired sensory system on a large-scale laboratory bridge model are initially used as clean data before being contaminated by different data pollutants in sequential manner to simulate practical SHM-oriented WSN uncertainties. The results of this study show the robustness of FDD and the precautions needed for SSI-data family when dealing with SHM-WSN uncertainties. Finally, the use of the measurement channel projection for the time-domain OMA techniques and the preferred combination of the OMA techniques to cope with the SHM-WSN uncertainties is recommended.