611 resultados para Sustainable cities
em Queensland University of Technology - ePrints Archive
Resumo:
One way to build more sustainable cities through network technologies is to start with monitoring the level and usage of resources as well as encourage citizens to participate in sustainable everyday practices. This workshop focuses on three fundamental areas of sustainable cities through urban informatics and ubiquitous computing: Environment: climate change adaptation Health: Food practices and cultures Civic engagement: citizen participation and interaction In particular, the workshop seeks to come up with locally (Oulu) specific ‘mash-up’ solutions that enhance the interactions of citizens with the physical city using data from various sources such as sensor networks. Students will work in groups to research, analyze, design, and develop local mash-ups. The workshop is designed to help students gain understanding of sustainability in a techno-social context, such as how the existing data can be effectively utilized, how to gather new data, and how to design efficient and engaging computer-human interactions. Further issues of consideration include access to and privacy of information and spaces, cultural specificities, and transdisciplinary research.
Resumo:
Prosperity and environmental sustainability of cities are inextricably linked. Cities can only maintain their prosperity when environmental and social objectives are fully integrated with economic goals for the purpose of a sustainable urban development. Sustainability assessment helps policy-makers decide what actions they should and should not take in an attempt to make our cities more sustainable. There are numerous models available for measuring and evaluating urban sustainability, and they focus their analysis on a specific scale—i.e., micro, mezzo, or macro. In most cases these results are inadequate for the other scales, though generating reliable results for that particular scale. The paper introduces a multiscalar urban sustainability approach by linking two sustainability assessment models evaluate sustainability performances in micro- and mezzo-levels and generate multiscalar results for the macro-level. The paper puts this approach into test in Gold Coast, Australia, and sheds light on the development of a more accurate sustainability analysis that may be interconnected with UN-Habitat’s City Prosperity Index.
Resumo:
Annually, several million tonnes of waste are produced from reworks, demolition, and use of substandard materials. Building Information Modelling (BIM), a digital representation of facilities and their constituent data, is a viable means of addressing some concerns about the impacts of these processes. BIM functionalities can be extended and combined with rich building information from specifications and product libraries, for efficient, streamlined design and construction. This paper conceptualises a framework for BIM-knowledge transfer from advanced economies for adaptation and use in urban development works in developing nations using the Sydney Down Under and Lagos Eko Atlantic projects as reference points. We present a scenario that highlights BIM-based lifecycle planning/specifications as agents of sustainable construction (in terms of cost and time) crucial to the quality of as-built data from early on in city development. We show how, through the use of BIM, city planners in developing nations can avoid high, retrospective (and sometimes wasteful) maintenance costs and leapfrog infrastructure management standards of advanced economies. Finally, this paper illustrates how BIM can address concerns about economic sustainability during city development in developing countries by enriching model objects with specification information sourced from a product library.
Resumo:
Rapid urbanization has brought environmentally, socially, and economically great challenges to cities and societies. To build a sustainable city, these challenges need to be faced efficiently and successfully. This paper focuses on the environmental issues and investigates the ecological approaches for planning sustainable cities through a comprehensive review of the relevant literature. The review focuses on several differing aspects of sustainable city formation. The paper provides insights on the interaction between the natural environment and human activities by identifying environmental effects resulting from this interaction; provides an introduction to the concept of sustainable urban development by underlining the important role of ecological planning in achieving sustainable cities; introduces the notion of urban ecosystems by establishing principles for the management of their sustainability; describes urban ecosystem sustainability assessment by introducing a review of current assessment methods, and; offers an outline of indexing urban environmental sustainability. The paper concludes with a summary of the findings.
Resumo:
Cities are the most dramatic manifestations of human activities on the surface of the earth. These human-dominated organisms—i.e., cities—degrade natural habitats, simplify species composition, disrupt hydrological systems, and modify energy flow and nutrient cycling. Today, these consequential impacts of human activities, originated from population increase, rapid urbanization, high private motor vehicle dependency, deregulated industrialization and mass livestock production, are increasing exponentially and causing great deal of environmental, social, and economic challenges both at global and local scales. In such a situation, establishment of sustainable cities, through sustainable urban development practices, is seen as a potential panacea to combat these challenges responsibly, effectively, and efficiently. This paper offers a critical review of the key literature on the issues relating to planning, development and management of sustainable cities, introduces the contributions from the Special Issue, and speculates on the prospective research directions to place necessary mechanisms to secure a sustainable urban future for all.
Resumo:
In the future we will have a detailed ecological model of the whole planet with capabilities to explore and predict the consequences of alternative futures. However, such a planetary eco-model will take time to develop, time to populate with data, and time to validate - time the planet doesn't have. In the interim, we can model the major concentrations of energy use and pollution - our cities - and connect them to form a "talking cities network". Such a networked city model would be much quicker to build and validate. And the advantage of this approach is that it is safer and more effective for us to interfere with the operation of our cities than to tamper directly with the behaviour of natural systems. Essentially, it could be thought of as providing the planet with a nervous system and would empower us to better develop and manage sustainable cities.
Resumo:
In August 2005, House of Representatives Standing Committee on Environment and Heritage released the Sustainable Cities report. The Australian Sustainable Built Environment Council (ASBEC) wrote to the Committee endorsing Recommendations 1 to 3, and Recommendation 31. In particular Recommendation 31 states: The committee recommends that, with reference to the Swedish model of environmental objectives, the Australian Government:
Resumo:
The concept of ‘sustainability’ has been pushed to the forefront of policy-making and politics as the world wakes up to the impacts of climate change and the effects of the modern urban lifestyle. Climate change has emerged to be one of the biggest challenges faced by our planet today, threatening both built and natural systems with long term consequences which may be irreversible. While there is a vast literature in the market on sustainable cities and urban development, there is currently none that bring together the vital issues of urban and regional development, and the planning, management and implementation of sustainable infrastructure. Large scale infrastructure plays an important part in modern society by not only promoting economic growth, but also by acting as a key indicator for it. More importantly, it supplies municipal/local amenity and services: water, electricity, social and communication facilities, waste removal, transport of people and goods, as well as numerous other services. For the most part, infrastructure has been built by teams lead by engineers who are more concerned about functionality than the concept of sustainability. However, it has been widely stated that current practices and lifestyle cannot continue if we are to leave a healthy living planet to not only the next generation, but also to the generations beyond. Therefore, in order to be sustainable, there are drastic measures that need to be taken. Current single purpose and design infrastructures that are open looped are not sustainable; they are too resource intensive, consume too much energy and support the consumption of natural resources at a rate that will exhaust their supply. Because of this, it is vital that modern society, policy-makers, developers, engineers and planners become pioneers in introducing and incorporating sustainable features into urban and regional infrastructure.
Resumo:
During the last several decades, the quality of natural resources and their services have been exposed to significant degradation from increased urban populations combined with the sprawl of settlements, development of transportation networks and industrial activities (Dorsey, 2003; Pauleit et al., 2005). As a result of this environmental degradation, a sustainable framework for urban development is required to provide the resilience of natural resources and ecosystems. Sustainable urban development refers to the management of cities with adequate infrastructure to support the needs of its population for the present and future generations as well as maintain the sustainability of its ecosystems (UNEP/IETC, 2002; Yigitcanlar, 2010). One of the important strategic approaches for planning sustainable cities is „ecological planning‟. Ecological planning is a multi-dimensional concept that aims to preserve biodiversity richness and ecosystem productivity through the sustainable management of natural resources (Barnes et al., 2005). As stated by Baldwin (1985, p.4), ecological planning is the initiation and operation of activities to direct and control the acquisition, transformation, disruption and disposal of resources in a manner capable of sustaining human activities with a minimum disruption of ecosystem processes. Therefore, ecological planning is a powerful method for creating sustainable urban ecosystems. In order to explore the city as an ecosystem and investigate the interaction between the urban ecosystem and human activities, a holistic urban ecosystem sustainability assessment approach is required. Urban ecosystem sustainability assessment serves as a tool that helps policy and decision-makers in improving their actions towards sustainable urban development. There are several methods used in urban ecosystem sustainability assessment among which sustainability indicators and composite indices are the most commonly used tools for assessing the progress towards sustainable land use and urban management. Currently, a variety of composite indices are available to measure the sustainability at the local, national and international levels. However, the main conclusion drawn from the literature review is that they are too broad to be applied to assess local and micro level sustainability and no benchmark value for most of the indicators exists due to limited data availability and non-comparable data across countries. Mayer (2008, p. 280) advocates that by stating "as different as the indices may seem, many of them incorporate the same underlying data because of the small number of available sustainability datasets". Mori and Christodoulou (2011) also argue that this relative evaluation and comparison brings along biased assessments, as data only exists for some entities, which also means excluding many nations from evaluation and comparison. Thus, there is a need for developing an accurate and comprehensive micro-level urban ecosystem sustainability assessment method. In order to develop such a model, it is practical to adopt an approach that uses a method to utilise indicators for collecting data, designate certain threshold values or ranges, perform a comparative sustainability assessment via indices at the micro-level, and aggregate these assessment findings to the local level. Hereby, through this approach and model, it is possible to produce sufficient and reliable data to enable comparison at the local level, and provide useful results to inform the local planning, conservation and development decision-making process to secure sustainable ecosystems and urban futures. To advance research in this area, this study investigated the environmental impacts of an existing urban context by using a composite index with an aim to identify the interaction between urban ecosystems and human activities in the context of environmental sustainability. In this respect, this study developed a new comprehensive urban ecosystem sustainability assessment tool entitled the „Micro-level Urban-ecosystem Sustainability IndeX‟ (MUSIX). The MUSIX model is an indicator-based indexing model that investigates the factors affecting urban sustainability in a local context. The model outputs provide local and micro-level sustainability reporting guidance to help policy-making concerning environmental issues. A multi-method research approach, which is based on both quantitative analysis and qualitative analysis, was employed in the construction of the MUSIX model. First, a qualitative research was conducted through an interpretive and critical literature review in developing a theoretical framework and indicator selection. Afterwards, a quantitative research was conducted through statistical and spatial analyses in data collection, processing and model application. The MUSIX model was tested in four pilot study sites selected from the Gold Coast City, Queensland, Australia. The model results detected the sustainability performance of current urban settings referring to six main issues of urban development: (1) hydrology, (2) ecology, (3) pollution, (4) location, (5) design, and; (6) efficiency. For each category, a set of core indicators was assigned which are intended to: (1) benchmark the current situation, strengths and weaknesses, (2) evaluate the efficiency of implemented plans, and; (3) measure the progress towards sustainable development. While the indicator set of the model provided specific information about the environmental impacts in the area at the parcel scale, the composite index score provided general information about the sustainability of the area at the neighbourhood scale. Finally, in light of the model findings, integrated ecological planning strategies were developed to guide the preparation and assessment of development and local area plans in conjunction with the Gold Coast Planning Scheme, which establishes regulatory provisions to achieve ecological sustainability through the formulation of place codes, development codes, constraint codes and other assessment criteria that provide guidance for best practice development solutions. These relevant strategies can be summarised as follows: • Establishing hydrological conservation through sustainable stormwater management in order to preserve the Earth’s water cycle and aquatic ecosystems; • Providing ecological conservation through sustainable ecosystem management in order to protect biological diversity and maintain the integrity of natural ecosystems; • Improving environmental quality through developing pollution prevention regulations and policies in order to promote high quality water resources, clean air and enhanced ecosystem health; • Creating sustainable mobility and accessibility through designing better local services and walkable neighbourhoods in order to promote safe environments and healthy communities; • Sustainable design of urban environment through climate responsive design in order to increase the efficient use of solar energy to provide thermal comfort, and; • Use of renewable resources through creating efficient communities in order to provide long-term management of natural resources for the sustainability of future generations.
Resumo:
In recent years, with the impact of global knowledge economy, a more comprehensive development approach has gained significant popularity. This new development approach, so called ‘knowledge-based urban development’, is different from its traditional predecessor. With a much more balanced focus on all of the four key development domains – economic, spatial, institutional, and socio-cultural – this contemporary approach, aims to bring economic prosperity, environmental sustainability and local institutional competence with a just socio-spatial order to our cities and regions. The ultimate goal of knowledgebased urban development is to produce a city purposefully designed to encourage the continuous production, circulation and commercialization of social and scientific knowledge – this will in turn establish a ‘knowledge city’. A city following the ‘knowledge city’ concept embarks on a strategic mission to firmly encourage and nurture locally focused innovation, science and creativity within the context of an expanding knowledge economy and society. In this regard a ‘knowledge city’ can be seen as an integrated city, which physically and institutionally combines the functions of a science and technology park with civic and residential functions and urban amenities. It also offers one of the effective paradigms for the sustainable cities of our time. This sixth edition of KCWS – The 6th Knowledge Cities World Summit 2013 – makes an important reminder that the ‘knowledge city’ concept is a key notion in the 21st Century development. Considering this notion, the Summit sheds light on the multifaceted dimensions and various scales of building a ‘knowledge city’ via ‘knowledge-based urban development’ paradigm by particularly focusing on the overall Summit theme of ‘Establishing Bridges’. At this summit, the theoretical and practical maturing of knowledge-based development paradigms are advanced through the interplay between the world’s leading academics’ theories and the practical models and strategies of practitioners’ and policy makers’ drawn from around the world. This summit proceeding is compiled in order to disseminate the knowledge generated and shared in KCWS 2013 with the wider research, governance, and practice communities the knowledge co-created in this summit. All papers of this proceeding have gone through a double-blind peer review process and been reviewed by our summit editorial review and advisory board members. We, organizers of the summit, cordially thank the members of the Summit Proceeding Editorial Review and Advisory Board for their diligent work in the review of the papers. Also we thank Prof.Dr. Ahmet Ademoğlu, Rector of İstanbul Şehir University, for providing all the support for the Summit. We hope the papers in this proceeding will inspire and make a significant contribution to the research, governance, and practice circles.
Resumo:
FROM KCWS 2011 CHAIRS AND SUMMIT PROCEEDING EDITORS In recent years, with the impact of global knowledge economy, a more comprehensive development approach has gained significant popularity. This new development approach, so called ‘knowledgebased development’, is different from its traditional predecessor. With a much more balanced focus on all of the four key development domains – economic, enviro-urban, institutional, and sociocultural – this contemporary approach, aims to bring economic prosperity, environmental sustainability and local institutional competence with a just socio-spatial order to our cities and regions. The ultimate goal of knowledge-based development is to produce a city purposefully designed to encourage the continuous production, circulation and commercialisation of social and scientific knowledge – this will in turn establish a ‘knowledge city’. A city following the ‘knowledge city’ concept embarks on a strategic mission to firmly encourage and nurture locally focussed innovation, science and creativity within the context of an expanding knowledge economy and society. In this regard a ‘knowledge city’ can be seen as an integrated city, which physically and institutionally combines the functions of a science and technology park with civic and residential functions and urban amenities. It also offers one of the effective paradigms for the sustainable cities of our time. This fourth edition of KCWS – The 4th Knowledge Cities World Summit 2011 – makes an important reminder that the 'knowledge city' concept is a key notion in the 21st Century development. Considering this notion, the Summit sheds light on the multi-faceted dimensions and various scales of building a ‘knowledge city’ via 'knowledge-based development' paradigm by particularly focusing on the overall Summit theme of ‘Knowledge Cities for Future Generations’. At this summit, the theoretical and practical maturing of knowledge-based development paradigms are advanced through the interplay between the world’s leading academics’ theories and the practical models and strategies of practitioners’ and policy makers’ drawn from around the world. This summit proceeding is compiled in order to disseminate the knowledge generated and shared in KCWS 2011 with the wider research, governance, and practice communities the knowledge cocreated in this summit. All papers of this proceeding have gone through a double-blind peer review process and been reviewed by our summit editorial review and advisory board members. We, organisers of the summit, cordially thank the members of the Summit Proceeding Editorial Review and Advisory Board for their diligent work in the review of the papers. We hope the papers in this proceeding will inspire and make a significant contribution to the research, governance, and practice circles.
Resumo:
The purpose of this article is to assess the viability of blanket sustainability policies, such as Building Rating Systems in achieving energy efficiency in university campus buildings. We analyzed the energy consumption trends of 10 LEED-certified buildings and 14 non-LEED certified buildings at a major university in the US. Energy Use Intensity (EUI) of the LEED buildings was significantly higher (EUILEED= 331.20 kBtu/sf/yr) than non-LEED buildings (EUInon-LEED=222.70 kBtu/sf/yr); however, the median EUI values were comparable (EUILEED= 172.64 and EUInon-LEED= 178.16). Because the distributions of EUI values were non-symmetrical in this dataset, both measures can be used for energy comparisons—this was also evident when EUI computations exclude outliers, EUILEED=171.82 and EUInon-LEED=195.41. Additional analyses were conducted to further explore the impact of LEED certification on university campus buildings energy performance. No statistically significant differences were observed between certified and non-certified buildings through a range of robust comparison criteria. These findings were then leveraged to devise strategies to achieve sustainable energy policies for university campus buildings and to identify potential issues with portfolio level building energy performance comparisons.
Resumo:
This paper begins by providing an overview of bike share programs, followed by a critical examination of the growing body of literature on these programs. This synthesis of previous works, both peer-reviewed and grey, includes an identification of the current gaps in knowledge related to the impacts of bike sharing programs. This synthesis represents a critically needed evaluation of the current state of global bike share research, in order to better understand, and maximize the effectiveness of current and future programs. Several consistent themes have emerged within the growing body of research on bike share programs. Firstly, the importance bike share members place on convenience and value for money appears paramount in their motivation to sign up and use these programs. Secondly, and somewhat counter intuitively, scheme members are more likely to own and use private bicycles than non-members. Thirdly, users demonstrate a greater reluctance to wear helmets than private bicycle riders and helmets have acted as a deterrent in jurisdictions in which helmets are mandatory. Finally, and perhaps most importantly from a sustainable transport perspective, the majority of scheme users are substituting from sustainable modes of transport rather than the car.
Resumo:
There are currently more than 400 cities operating bike share programs. Purported benefits of bike share programs include flexible mobility, physical activity, reduced congestion, emissions and fuel use. Implicit or explicit in the calculation of program benefits are assumptions regarding the modes of travel replaced by bike share journeys. This paper examines the degree to which car trips are replaced by bike share, through an examination of survey and trip data from bike share programs in Melbourne, Brisbane, Washing, D.C., London, and Minneapolis/St. Paul. A secondary and unique component of this analysis examines motor vehicle support services required for bike share fleet rebalancing and maintenance. These two components are then combined to estimate bike share’s overall contribution to changes in vehicle kilometres traveled. The results indicate that the estimated mean reduction in car use due to bike share is at least twice the distance covered by operator support vehicles, with the exception of London, in which the relationship is reversed, largely due to a low car mode substitution rate. As bike share programs mature, evaluation of their effectiveness in reducing car use may become increasingly important. This paper reveals that by increasing the convenience of bike share relative to car use and by improving perceptions of safety, the capacity of bike share programs to reduce vehicle trips and yield overall net benefits will be enhanced. Researchers can adapt the analytical approach proposed in this paper to assist in the evaluation of current and future bike share programs.