79 resultados para Sugar machinery.
em Queensland University of Technology - ePrints Archive
International Competitiveness and Sugar Strategy Options in Australia, Brazil and the European Union
Resumo:
The ability to forecast machinery failure is vital to reducing maintenance costs, operation downtime and safety hazards. Recent advances in condition monitoring technologies have given rise to a number of prognostic models for forecasting machinery health based on condition data. Although these models have aided the advancement of the discipline, they have made only a limited contribution to developing an effective machinery health prognostic system. The literature review indicates that there is not yet a prognostic model that directly models and fully utilises suspended condition histories (which are very common in practice since organisations rarely allow their assets to run to failure); that effectively integrates population characteristics into prognostics for longer-range prediction in a probabilistic sense; which deduces the non-linear relationship between measured condition data and actual asset health; and which involves minimal assumptions and requirements. This work presents a novel approach to addressing the above-mentioned challenges. The proposed model consists of a feed-forward neural network, the training targets of which are asset survival probabilities estimated using a variation of the Kaplan-Meier estimator and a degradation-based failure probability density estimator. The adapted Kaplan-Meier estimator is able to model the actual survival status of individual failed units and estimate the survival probability of individual suspended units. The degradation-based failure probability density estimator, on the other hand, extracts population characteristics and computes conditional reliability from available condition histories instead of from reliability data. The estimated survival probability and the relevant condition histories are respectively presented as “training target” and “training input” to the neural network. The trained network is capable of estimating the future survival curve of a unit when a series of condition indices are inputted. Although the concept proposed may be applied to the prognosis of various machine components, rolling element bearings were chosen as the research object because rolling element bearing failure is one of the foremost causes of machinery breakdowns. Computer simulated and industry case study data were used to compare the prognostic performance of the proposed model and four control models, namely: two feed-forward neural networks with the same training function and structure as the proposed model, but neglected suspended histories; a time series prediction recurrent neural network; and a traditional Weibull distribution model. The results support the assertion that the proposed model performs better than the other four models and that it produces adaptive prediction outputs with useful representation of survival probabilities. This work presents a compelling concept for non-parametric data-driven prognosis, and for utilising available asset condition information more fully and accurately. It demonstrates that machinery health can indeed be forecasted. The proposed prognostic technique, together with ongoing advances in sensors and data-fusion techniques, and increasingly comprehensive databases of asset condition data, holds the promise for increased asset availability, maintenance cost effectiveness, operational safety and – ultimately – organisation competitiveness.
Resumo:
Cleaning of sugar mill evaporators is an expensive exercise. Identifying the scale components assists in determining which chemical cleaning agents would result in effective evaporator cleaning. The current methods (based on x-ray diffraction techniques, ion exchange/high performance liquid chromatography and thermogravimetry/differential thermal analysis) used for scale characterisation are difficult, time consuming and expensive, and cannot be performed in a conventional analytical laboratory or by mill staff. The present study has examined the use of simple descriptor tests for the characterisation of Australian sugar mill evaporator scales. Scale samples were obtained from seven Australian sugar mill evaporators by mechanical means. The appearance, texture and colour of the scale were noted before the samples were characterised using x-ray fluorescence and x-ray powder diffraction to determine the compounds present. A number of commercial analytical test kits were used to determine the phosphate and calcium contents of scale samples. Dissolution experiments were carried out on the scale samples with selected cleaning agents to provide relevant information about the effect the cleaning agents have on different evaporator scales. Results have shown that by simply identifying the colour and the appearance of the scale, the elemental composition and knowing from which effect the scale originates, a prediction of the scale composition can be made. These descriptors and dissolution experiments on scale samples can be used to provide factory staff with an on-site rapid process to predict the most effective chemicals for chemical cleaning of the evaporators.
Resumo:
This paper examines the fouling characteristics of four tubular ceramic membranes with pore sizes 300 kDa, 0.1 μm and 0.45 μm installed in a pilot plant at a sugar factory for processing clarified cane sugar juices. All the membranes, except the one with a pore size of 0.45 μm, generally gave reproducible results through the trials, were easy to clean and could handle operation at high volumetric concentration factors. Analysis of fouled and cleaned ceramic membranes revealed that polysaccharides, lipids and to a lesser extent, polyphenols, as well as other colloidal particles cause fouling of the membranes. Electrostatic and hydrophobic forces cause strong aggregation of the polymeric components with one another and with colloidal particles. To combat irreversible fouling of the membranes, treatment options that result in the removal of particles having a size range of 0.2–0.5 μm and in addition remove polymeric impurities, need to be identified. Chemical and microscopic evaluations of the juices and the structural characterisation of individual particles and aggregates identified options to mitigate the fouling of membranes. These include conditioning the feed prior to membrane filtration to break up the network structure formed between the polymers and particles in the feed and the use of surfactants to prevent the aggregation of polymers and particles.
Resumo:
The ISSCT Process Section workshop held in Réunion 20–23 October 2008 was attended by 51 delegates from 10 countries. The theme was Green cane impact on sugar processing. The workshop provided a valuable and timely opportunity to review and discuss the impact on factory operations and performance from a green cane supply that could include significant levels of trash. It was particularly relevant to those mills that were considering options to boost their biomass intake for increased co-generation capacity. Several of the speakers related their experiences with processing ‘whole of crop’ cane supplies through the factory. Speakers detailed the problems and increased losses that were incurred when processing cane with high trash levels. The consensus of the delegates was that the best scenario would involve a cane-cleaning plant at the factory so that only clean cane would be processed through the factory. The forum recommended that more research was required to address the issues of increased impurities in the process streams associated with high trash levels. Site visits to the two factories and a cane-delivery station were arranged as part of the workshop.