3 resultados para Sudbury

em Queensland University of Technology - ePrints Archive


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Sudbury Basin is a non-cylindrical fold basin occupying the central portion of the Sudbury Impact Structure. The impact structure lends itself excellently to explore the structural evolution of continental crust containing a circular region of long-term weakness. In a series of scaled analogue experiments various model crustal configurations were shortened horizontally at a constant rate. In mechanically weakened crust, model basins formed that mimic several first-order structural characteristics of the Sudbury Basin: (1) asymmetric, non-cylindrical folding of the Basin, (2) structures indicating concentric shortening around lateral basin termini and (3) the presence of a zone of strain concentration near the hinge zones of model basins. Geometrically and kinematically this zone corresponds to the South Range Shear Zone of the Sudbury Basin. According to our experiments, this shear zone is a direct mechanical consequence of basin formation, rather than the result of thrusting following folding. Overall, the models highlight the structurally anomalous character of the Sudbury Basin within the Paleoproterozoic Eastern Penokean Orogen. In particular, our models suggest that the Basin formed by pure shear thickening of crust, whereas transpressive deformation prevailed elsewhere in the orogen. The model basin is deformed by thickening and non-cylindrical synformal buckling, while conjugate transpressive shear zones propagated away from its lateral tips. This is consistent with pure shear deformation of a weak circular inclusion in a strong matrix. The models suggest that the Sudbury Basin formed as a consequence of long-term weakening of the upper crust by meteorite impact.

Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Resumo:

For many years materials such as quarried sand, anthracite, and granular activated carbon have been the principal media-products traditionally used in water and wastewater filtration plants. Pebble Matrix Filtration (PMF) is a novel non-chemical, sustainable pre-treatment method of protecting Slow Sand Filters (SSF) from high turbidity during heavy monsoon periods. PMF uses sand and pebbles as the filter media and the sustainability of this new technology might depend on availability and supply of pebbles and sand, both finite resources. In many countries there are two principal methods of obtaining pebbles and sand, namely dredging from rivers and beaches, and due to the scarcity of these resources in some countries the cost of pebbles is often 4-5 times higher than that of sand. In search for an alternative medium to pebbles after some preliminary laboratory tests conducted in Colombo-Sri Lanka, Poznan-Poland and Cambridge-UK, a 100-year-old brick factory near Sudbury, Suffolk, has produced hand-made clay pebbles satisfying the PMF quality requirements. As an alternative to sand, crushed recycled glass from a UK supplier was used and the PMF system was operated together with hand-made clay balls in the laboratory for high turbidity removal effectively. The results of laboratory experiments with alternative media are presented in this paper. There are potential opportunities for recycled crushed glass and clay ball manufacturing processes in some countries where they can be used as filter media.