73 resultados para Substrate Specificity

em Queensland University of Technology - ePrints Archive


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Two archaeal Holliday junction resolving enzymes, Holliday junction cleavage (Hjc) and Holliday junction endonuclease (Hje), have been characterized. Both are members of a nuclease superfamily that includes the type II restriction enzymes, although their DNA cleaving activity is highly specific for four-way junction structure and not nucleic acid sequence. Despite 28% sequence identity, Hje and Hjc cleave junctions with distinct cutting patterns—they cut different strands of a four-way junction, at different distances from the junction centre. We report the high-resolution crystal structure of Hje from Sulfolobus solfataricus. The structure provides a basis to explain the differences in substrate specificity of Hje and Hjc, which result from changes in dimer organization, and suggests a viral origin for the Hje gene. Structural and biochemical data support the modelling of an Hje:DNA junction complex, highlighting a flexible loop that interacts intimately with the junction centre. A highly conserved serine residue on this loop is shown to be essential for the enzyme's activity, suggesting a novel variation of the nuclease active site. The loop may act as a conformational switch, ensuring that the active site is completed only on binding a four-way junction, thus explaining the exquisite specificity of these enzymes.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Evidence for a two-metal ion mechanism for cleavage of the HH16 hammerhead ribozyme is provided by monitoring the rate of cleavage of the RNA substrate as a function of La3+ concentration in the presence of a constant concentration of Mg2+. We show that a bell-shaped curve of cleavage activation is obtained as La3+ is added in micromolar concentrations in the presence of 8 mM Mg2+, with a maximal rate of cleavage being attained in the presence of 3 microM La3+. These results show that two-metal ion binding sites on the ribozyme regulate the rate of the cleavage reaction and, on the basis of earlier estimates of the Kd values for Mg2+ of 3.5 mM and > 50 mM, that these sites bind La3+ with estimated Kd values of 0.9 and > 37.5 microM, respectively. Furthermore, given the very different effects of these metal ions at the two binding sites, with displacement of Mg2+ by La3+ at the stronger (relative to Mg2+) binding site activating catalysis and displacement of Mg2+ by La3+ at the weaker (relative to Mg2+) (relative to Mg2+) binding site inhibiting catalysis, we show that the metal ions at these two sites play very different roles. We argue that the metal ion at binding site 1 coordinates the attacking 2'-oxygen species in the reaction and lowers the pKa of the attached proton, thereby increasing the concentration of the attacking alkoxide nucleophile in an equilibrium process. In contrast, the role of the metal ion at binding site 2 is to catalyze the reaction by absorbing the negative charge that accumulates at the leaving 5'-oxygen in the transition state. We suggest structural reasons why the Mg(2+)-La3+ ion combination is particularly suited to demonstrating these different roles of the two-metal ions in the ribozyme cleavage reaction.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Recently, a polymorphism was identified in exon 25 of the factor V gene that is possibly a functional candidate for the HR2 haplotype. This haplotype is characterized by a single base substitution named R2 (A4070G) in the B domain of the protein. A mutation (A6755G; 2194Asp→Gly) located near the C terminus has been hypothesized to influence protein folding and glycosylation, and might be responsible for the shift in factor V isoform (FV1 / FV2) ratio. This study investigated the prevalence of these two factor V HR2 haplotype polymorphisms in a cohort of normal blood donors, patients with osteoarthritis and women with complications during pregnancy, and in families of factor V Leiden individuals. A high allele frequency for the two polymorphisms was found in the blood donor group (6.2% R2, 5.6% A6755G). No significant difference in allele frequency was observed in the clinical groups (obstetric complications and osteoarthritis, 4.1-4.9% for the two polymorphisms) when compared with that of healthy blood donors. We confirm that the factor V A6755G polymorphism shows strong linkage to the R2 allele, although it is not exclusively inherited with the exon 13 A4070G variant and can occur independently. © 2001 Lippincott Williams & Wilkins.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

An array of substrates link the tryptic serine protease, kallikrein-related peptidase 14 (KLK14), to physiological functions including desquamation and activation of signaling molecules associated with inflammation and cancer. Recognition of protease cleavage sequences is driven by complementarity between exposed substrate motifs and the physicochemical signature of an enzyme's active site cleft. However, conventional substrate screening methods have generated conflicting subsite profiles for KLK14. This study utilizes a recently developed screening technique, the sparse matrix library, to identify five novel high-efficiency sequences for KLK14. The optimal sequence, YASR, was cleaved with higher efficiency (k(cat)/K(m)=3.81 ± 0.4 × 10(6) M(-1) s(-1)) than favored substrates from positional scanning and phage display by 2- and 10-fold, respectively. Binding site cooperativity was prominent among preferred sequences, which enabled optimal interaction at all subsites as indicated by predictive modeling of KLK14/substrate complexes. These simulations constitute the first molecular dynamics analysis of KLK14 and offer a structural rationale for the divergent subsite preferences evident between KLK14 and closely related KLKs, KLK4 and KLK5. Collectively, these findings highlight the importance of binding site cooperativity in protease substrate recognition, which has implications for discovery of optimal substrates and engineering highly effective protease inhibitors.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Disulfide bond (DSB) formation is catalyzed by disulfide bond proteins and is critical for the proper folding and functioning of secreted and membrane-associated bacterial proteins. Uropathogenic Escherichia coli (UPEC) strains possess two paralogous disulfide bond systems: the well-characterized DsbAB system and the recently described DsbLI system. In the DsbAB system, the highly oxidizing DsbA protein introduces disulfide bonds into unfolded polypeptides by donating its redox-active disulfide and is in turn reoxidized by DsbB. DsbA has broad substrate specificity and reacts readily with reduced unfolded proteins entering the periplasm. The DsbLI system also comprises a functional redox pair; however, DsbL catalyzes the specific oxidative folding of the large periplasmic enzyme arylsulfate sulfotransferase (ASST). In this study, we characterized the DsbLI system of the prototypic UPEC strain CFT073 and examined the contributions of the DsbAB and DsbLI systems to the production of functional flagella as well as type 1 and P fimbriae. The DsbLI system was able to catalyze disulfide bond formation in several well-defined DsbA targets when provided in trans on a multicopy plasmid. In a mouse urinary tract infection model, the isogenic dsbAB deletion mutant of CFT073 was severely attenuated, while deletion of dsbLI or assT did not affect colonization.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Alcohol consumption and tobacco smoking are major causes of head and neck cancers, and regional differences point to the importance of research into gene-environment interactions. Much interest has been focused on polymorphisms of CYP1A1 and of GSTM1 and GSTT1, but a number of studies have not demonstrated significant effects. This has mostly been ascribed to small sample sizes. In general, the impact of polymorphisms of metabolic enzymes appears inconsistent, with some reports of weak-to-moderate associations, and with others of no elevation of risks. The classical cytochrome P450 isoenzyme considered for metabolic activation of polycyclic aromatic hydrocarbons (PAH) is CYP1A1. A new member of the CYP1 family, CYP1B1, was cloned in 1994, currently representing the only member of the CYP1B subfamily. A number of single nucleotide polymorphisms of the CYP1B1 gene have been reported. The amino acid substitutions Val432Leu (CYP1B1*3) and Asn453Ser (CYP1B1*4), located in the heme binding domain of CYP1B1, appear as likely candidates to be linked with biological effects. CYP1B1 activates a wide range of PAH, aromatic and heterocyclic amines. Very recently, the CYP1B1 codon 432 polymorphism (CYP1B1*3) has been identified as a susceptibility factor in smoking-related head-and-neck squamous cell cancer. The impact of this polymorphic variant of CYP1B1 on cancer risk was also reflected by an association with the frequency of somatic mutations of the p53 gene. Combined genotype analysis of CYP1B1 and the glutathione transferases GSTM1 or GSTT1 has pointed to interactive effects. This provides new molecular evidence that tobacco smoke-specific compounds relevant to head and neck carcinogenesis are metabolically activated through CYP1B1 and is consistent with a major pathogenetic relevance of PAH as ingredients of tobacco smoke.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A new system has been developed to determine enzyme activities of glutathione transferase θ (GSTT1-1) based on radiometric product detection resulting from the enzymic reaction of methyl chloride with 35S-labelled glutathione. In principle, the method is universally applicable for determination of glutathione transferase activities towards a multiplicity of substrates. The method distinguishes between erythrocyte GSTT1-1 activities of human 'non-conjugators', 'low conjugators' and 'high conjugators'. Application to cytosol preparations of livers and kidneys of male and female Fischer 344 and B6C3F1 mice reveals differential GSTT1-1 activities in hepatic and renal tissues. These ought to be considered in species-specific modellings of organ toxicities of chlorinated hydrocarbons.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

High-throughput screening of cytochrome P450CAM libraries, for their ability to oxidise indole to indigo and indirubin, has resulted in the identification of variants with activity towards the structurally unrelated substrate diphenylmethane.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

HtrA is a complex, multimeric chaperone and serine protease important for the virulence and survival of many bacteria. Chlamydia trachomatis is an obligate, intracellular bacterial pathogen that is responsible for severe disease pathology. C. trachomatis HtrA (CtHtrA) has been shown to be highly expressed in laboratory models of disease. In this study, molecular modelling of CtHtrA protein active site structure identified putative S1-S3 subsite residues I242, I265, and V266. These residues were altered by site-directed mutagenesis, and these changes were shown to considerably reduce protease activity on known substrates and resulted in a narrower and distinct range of substrates compared to wild type. Bacterial two-hybrid analysis revealed that CtHtrA is able to interact in vivo with a broad range of protein sequences with high affinity. Notably, however, the interaction was significantly altered in 35 out of 69 clones when residue V266 was mutated, indicating that this residue has an important function during substrate binding.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ubiquitination involves the attachment of ubiquitin to lysine residues on substrate proteins or itself, which can result in protein monoubiquitination or polyubiquitination. Ubiquitin attachment to different lysine residues can generate diverse substrate-ubiquitin structures, targeting proteins to different fates. The mechanisms of lysine selection are not well understood. Ubiquitination by the largest group of E3 ligases, the RING-family E3 s, is catalyzed through co-operation between the non-catalytic ubiquitin-ligase (E3) and the ubiquitin-conjugating enzyme (E2), where the RING E3 binds the substrate and the E2 catalyzes ubiquitin transfer. Previous studies suggest that ubiquitination sites are selected by E3-mediated positioning of the lysine toward the E2 active site. Ultimately, at a catalytic level, ubiquitination of lysine residues within the substrate or ubiquitin occurs by nucleophilic attack of the lysine residue on the thioester bond linking the E2 catalytic cysteine to ubiquitin. One of the best studied RING E3/ E2 complexes is the Skp1/Cul1/F box protein complex, SCFCdc4, and its cognate E2, Cdc34, which target the CDK inhibitor Sic1 for K48-linked polyubiquitination, leading to its proteasomal degradation. Our recent studies of this model system demonstrated that residues surrounding Sic1 lysines or lysine 48 in ubiquitin are critical for ubiquitination. This sequence-dependence is linked to evolutionarily conserved key residues in the catalytic region of Cdc34 and can determine if Sic1 is mono- or poly-ubiquitinated. Our studies indicate that amino acid determinants in the Cdc34 catalytic region and their compatibility to those surrounding acceptor lysine residues play important roles in lysine selection. This may represent a general mechanism in directing the mode of ubiquitination in E2 s.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ubiquitin (Ub)-conjugating enzymes (E2s) and ubiquitin ligases (E3s) catalyze the attachment of Ub to lysine residues in substrates and Ub during monoubiquitination and polyubiquitination. Lysine selection is important for the generation of diverse substrate-Ub structures, which provides versatility to this pathway in the targeting of proteins to different fates. The mechanisms of lysine selection remain poorly understood, with previous studies suggesting that the ubiquitination site(s) is selected by the E2/E3-mediated positioning of a lysine(s) toward the E2/E3 active site. By studying the polyubiquitination of Sic1 by the E2 protein Cdc34 and the RING E3 Skp1/Cul1/F-box (SCF) protein, we now demonstrate that in addition to E2/E3-mediated positioning, proximal amino acids surrounding the lysine residues in Sic1 and Ub are critical for ubiquitination. This mechanism is linked to key residues composing the catalytic core of Cdc34 and independent of SCF. Changes to these core residues altered the lysine preference of Cdc34 and specified whether this enzyme monoubiquitinated or polyubiquitinated Sic1. These new findings indicate that compatibility between amino acids surrounding acceptor lysine residues and key amino acids in the catalytic core of ubiquitin-conjugating enzymes is an important mechanism for lysine selection during ubiquitination.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Jacques Ranciere's work on aesthetics has received a great deal of attention recently. Given his work has enormous range – taking in art and literature, political theory, historiography, pedagogy and worker's history – Andrew McNamara and Toni Ross (UNSW) seek to explore his wider project in this interview, while showing how it leads to his alternative insights into aesthetics. Rancière sets aside the core suppositions linking the medium to aesthetic judgment, which has informed many definitions of modernism. Rancière is emphatic in freeing aesthetic judgment from issues of medium-specificity. He argues that the idea of autonomy associated with medium-specificity – or 'truth to the medium' – was 'a very late one' in modernism, and that post-medium trends were already evident in early modernism. While not stressing a simple continuity between early modernism and contemporary art, Ranciere nonetheless emphasizes the ethical and political ramifications of maintaining an a-disciplinary stance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sales growth and employment growth are the two most widely used growth indicators for new ventures; yet, sales growth and employment growth are not interchangeable measures of new venture growth. Rather, they are related, but somewhat independent constructs that respond differently to a variety of criteria. Most of the literature treats this as a methodological technicality. However, sales growth with or without accompanying employment growth has very different implications for managers and policy makers. A better understanding of what drives these different growth metrics has the potential to lead to better decision making. To improve that understanding we apply transaction cost economics reasoning to predict when sales growth will be or will not be accompanied by employment growth. Our results indicate that our predictions are borne out consistently in resource-constrained contexts but not in resource-munificent contexts.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A wide range of screening strategies have been employed to isolate antibodies and other proteins with specific attributes, including binding affinity, specificity, stability and improved expression. However, there remains no high-throughput system to screen for target-binding proteins in a mammalian, intracellular environment. Such a system would allow binding reagents to be isolated against intracellular clinical targets such as cell signalling proteins associated with tumour formation (p53, ras, cyclin E), proteins associated with neurodegenerative disorders (huntingtin, betaamyloid precursor protein), and various proteins crucial to viral replication (e.g. HIV-1 proteins such as Tat, Rev and Vif-1), which are difficult to screen by phage, ribosome or cell-surface display. This study used the β-lactamase protein complementation assay (PCA) as the display and selection component of a system for screening a protein library in the cytoplasm of HEK 293T cells. The colicin E7 (ColE7) and Immunity protein 7 (Imm7) *Escherichia coli* proteins were used as model interaction partners for developing the system. These proteins drove effective β-lactamase complementation, resulting in a signal-to-noise ratio (9:1 – 13:1) comparable to that of other β-lactamase PCAs described in the literature. The model Imm7-ColE7 interaction was then used to validate protocols for library screening. Single positive cells that harboured the Imm7 and ColE7 binding partners were identified and isolated using flow cytometric cell sorting in combination with the fluorescent β-lactamase substrate, CCF2/AM. A single-cell PCR was then used to amplify the Imm7 coding sequence directly from each sorted cell. With the screening system validated, it was then used to screen a protein library based the Imm7 scaffold against a proof-of-principle target. The wild-type Imm7 sequence, as well as mutants with wild-type residues in the ColE7- binding loop were enriched from the library after a single round of selection, which is consistent with other eukaryotic screening systems such as yeast and mammalian cell-surface display. In summary, this thesis describes a new technology for screening protein libraries in a mammalian, intracellular environment. This system has the potential to complement existing screening technologies by allowing access to intracellular proteins and expanding the range of targets available to the pharmaceutical industry.