253 resultados para Subset Sum Problem

em Queensland University of Technology - ePrints Archive


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Aspects of Keno modelling throughout the Australian states of Queensland, New South Wales and Victoria are discussed: the trivial Heads or Tails and the more interesting Keno Bonus, which leads to consideration of the subset sum problem. The most intricate structure is where Heads or Tails and Keno Bonus are combined, and here, the issue of independence arises. Closed expressions for expected return to player are presented in each case.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Universal One-Way Hash Functions (UOWHFs) may be used in place of collision-resistant functions in many public-key cryptographic applications. At Asiacrypt 2004, Hong, Preneel and Lee introduced the stronger security notion of higher order UOWHFs to allow construction of long-input UOWHFs using the Merkle-Damgård domain extender. However, they did not provide any provably secure constructions for higher order UOWHFs. We show that the subset sum hash function is a kth order Universal One-Way Hash Function (hashing n bits to m < n bits) under the Subset Sum assumption for k = O(log m). Therefore we strengthen a previous result of Impagliazzo and Naor, who showed that the subset sum hash function is a UOWHF under the Subset Sum assumption. We believe our result is of theoretical interest; as far as we are aware, it is the first example of a natural and computationally efficient UOWHF which is also a provably secure higher order UOWHF under the same well-known cryptographic assumption, whereas this assumption does not seem sufficient to prove its collision-resistance. A consequence of our result is that one can apply the Merkle-Damgård extender to the subset sum compression function with ‘extension factor’ k+1, while losing (at most) about k bits of UOWHF security relative to the UOWHF security of the compression function. The method also leads to a saving of up to m log(k+1) bits in key length relative to the Shoup XOR-Mask domain extender applied to the subset sum compression function.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In two earlier papers, an intricate Jackpot structure and analysis of pseudo-random numbers for Keno in the Australian state of Queensland circa 2000 were described. Aspects of the work were also reported at an international conference . Since that time, many aspects of the game in Australia have changed. The present paper presents more up-to-date details of Keno throughout the states of Queensland, New South Wales and Victoria. A much simpler jackpot structure is now in place and this is described. Two add-ons or side-bets to the game are detailed: the trivial Heads or Tails and the more interesting Keno Bonus, which leads to consideration of the subset sum problem. The most intricate structure is where Heads or Tails and Keno Bonus are combined, and here, the issue of independence arises. Closed expressions for expected return to player (ERTP) are presented in all cases.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The sum of k mins protocol was proposed by Hopper and Blum as a protocol for secure human identification. The goal of the protocol is to let an unaided human securely authenticate to a remote server. The main ingredient of the protocol is the sum of k mins problem. The difficulty of solving this problem determines the security of the protocol. In this paper, we show that the sum of k mins problem is NP-Complete and W[1]-Hard. This latter notion relates to fixed parameter intractability. We also discuss the use of the sum of k mins protocol in resource-constrained devices.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A number of online algorithms have been developed that have small additional loss (regret) compared to the best “shifting expert”. In this model, there is a set of experts and the comparator is the best partition of the trial sequence into a small number of segments, where the expert of smallest loss is chosen in each segment. The regret is typically defined for worst-case data / loss sequences. There has been a recent surge of interest in online algorithms that combine good worst-case guarantees with much improved performance on easy data. A practically relevant class of easy data is the case when the loss of each expert is iid and the best and second best experts have a gap between their mean loss. In the full information setting, the FlipFlop algorithm by De Rooij et al. (2014) combines the best of the iid optimal Follow-The-Leader (FL) and the worst-case-safe Hedge algorithms, whereas in the bandit information case SAO by Bubeck and Slivkins (2012) competes with the iid optimal UCB and the worst-case-safe EXP3. We ask the same question for the shifting expert problem. First, we ask what are the simple and efficient algorithms for the shifting experts problem when the loss sequence in each segment is iid with respect to a fixed but unknown distribution. Second, we ask how to efficiently unite the performance of such algorithms on easy data with worst-case robustness. A particular intriguing open problem is the case when the comparator shifts within a small subset of experts from a large set under the assumption that the losses in each segment are iid.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new solution to the millionaire problem is designed on the base of two new techniques: zero test and batch equation. Zero test is a technique used to test whether one or more ciphertext contains a zero without revealing other information. Batch equation is a technique used to test equality of multiple integers. Combination of these two techniques produces the only known solution to the millionaire problem that is correct, private, publicly verifiable and efficient at the same time.