99 resultados para Subcellular proteomics
em Queensland University of Technology - ePrints Archive
Resumo:
Expression of caveolin-1 is up-regulated in prostate cancer metastasis and is associated with aggressive recurrence of the disease. Intriguingly, caveolin-1 is also secreted from prostate cancer cell lines and has been identified in secreted prostasomes. Caveolin-1 is the major structural component of the plasma membrane invaginations called caveolae. Co-expression of the coat protein Polymerase I and transcript release factor (PTRF) is required for caveolae formation. We recently found that expression of caveolin-1 in the aggressive prostate cancer cell line PC-3 is not accompanied by PTRF, leading to noncaveolar caveolin-1 lipid rafts. Moreover, ectopic expression of PTRF in PC-3 cells sequesters caveolin-1 into caveolae. Here we quantitatively analyzed the effect of PTRF expression on the PC-3 proteome using stable isotope labeling by amino acids in culture and subcellular proteomics. We show that PTRF reduced the secretion of a subset of proteins including secreted proteases, cytokines, and growth regulatory proteins, partly via a reduction in prostasome secretion. To determine the cellular mechanism accounting for the observed reduction in secreted proteins we analyzed total membrane and the detergent-resistant membrane fractions. Our data show that PTRF expression selectively impaired the recruitment of actin cytoskeletal proteins to the detergent-resistant membrane, which correlated with altered cholesterol distribution in PC-3 cells expressing PTRF. Consistent with this, modulating cellular cholesterol altered the actin cytoskeleton and protein secretion in PC-3 cells. Intriguingly, several proteins that function in ER to Golgi trafficking were reduced by PTRF expression. Taken together, these results suggest that the noncaveolar caveolin-1 found in prostate cancer cells generates a lipid raft microenvironment that accentuates secretion pathways, possibly at the step of ER sorting/exit. Importantly, these effects could be modulated by PTRF expression.
Resumo:
As proteins within cells are spatially organized according to their role, knowledge about protein localization gives insight into protein function. Here, we describe the LOPIT technique (localization of organelle proteins by isotope tagging) developed for the simultaneous and confident determination of the steady-state distribution of hundreds of integral membrane proteins within organelles. The technique uses a partial membrane fractionation strategy in conjunction with quantitative proteomics. Localization of proteins is achieved by measuring their distribution pattern across the density gradient using amine-reactive isotope tagging and comparing these patterns with those of known organelle residents. LOPIT relies on the assumption that proteins belonging to the same organelle will co-fractionate. Multivariate statistical tools are then used to group proteins according to the similarities in their distributions, and hence localization without complete centrifugal separation is achieved. The protocol requires approximately 3 weeks to complete and can be applied in a high-throughput manner to material from many varied sources.
Resumo:
Background: Cancer metastasis is the main contributor to breast cancer fatalities as women with the metastatic disease have poorer survival outcomes than women with localised breast cancers. There is an urgent need to develop appropriate prognostic methods to stratify patients based on the propensities of their cancers to metastasise. The insulin-like growth factor (IGF)-I:IGF binding protein (IGFBP):vitronectin complexes have been shown to stimulate changes in gene expression favouring increased breast cancer cell survival and a migratory phenotype. We therefore investigated the prognostic potential of these IGF- and extracellular matrix (ECM) interaction-induced proteins in the early identification of breast cancers with a propensity to metastasise using patient-derived tissue microarrays. Methods: Semiquantitative immunohistochemistry analyses were performed to compare the extracellular and subcellular distribution of IGF- and ECM-induced signalling proteins among matched normal, primary cancer and metastatic cancer formalin-fixed paraffin-embedded breast tissue samples. Results: The IGF- and ECM-induced signalling proteins were differentially expressed between subcellular and extracellular localisations. Vitronectin and IGFBP-5 immunoreactivity was lower while β1 integrin immunoreactivity was higher in the stroma surrounding metastatic cancer tissues, as compared to normal breast and primary cancer stromal tissues. Similarly, immunoreactive stratifin was found to be increased in the stroma of primary as well as metastatic breast tissues. Immunoreactive fibronectin and β1 integrin was found to be highly expressed at the leading edge of tumours. Based on the immunoreactivity it was apparent that the cell signalling proteins AKT1 and ERK1/2 shuffled from the nucleus to the cytoplasm with tumour progression. Conclusion: This is the first in-depth, compartmentalised analysis of the distribution of IGF- and ECM-induced signalling proteins in metastatic breast cancers. This study has provided insights into the changing pattern of cellular localisation and expression of IGF- and ECM-induced signalling proteins in different stages of breast cancer. The differential distribution of these biomarkers could provide important prognostic and predictive indicators that may assist the clinical management of breast disease, namely in the early identification of cancers with a propensity to metastasise, and/or recur following adjuvant therapy.
Resumo:
Uropathogenic Escherichia coli (UPEC) are the primary cause of urinary tract infection (UTI) in humans. For the successful colonisation of the human urinary tract, UPEC employ a diverse collection of secreted or surface-exposed virulence factors including toxins, iron acquisition systems and adhesins. In this study, a comparative proteomic approach was utilised to define the UPEC pan and core surface proteome following growth in pooled human urine. Identified proteins were investigated for subcellular origin, prevalence and homology to characterised virulence factors. Fourteen core surface proteins were identified, as well as eleven iron uptake receptor proteins and four distinct fimbrial types, including type 1, P, F1C/S and a previously uncharacterised fimbrial type, designated UCA-like (UCL) fimbriae in this study. These pathogenicity island (PAI)-associated fimbriae are related to UCA fimbriae of Proteus mirabilis, associated with UPEC and exclusively found in members of the E. coli B2 and D phylogroup. We further demonstrated that UCL fimbriae promote significant biofilm formation on abiotic surfaces and mediate specific attachment to exfoliated human uroepithelial cells. Combined, this study has defined the surface proteomic profiles and core surface proteome of UPEC during growth in human urine and identified a new type of fimbriae that may contribute to UTI.
Resumo:
Dr. Young-Ki Paik directs the Yonsei Proteome Research Center in Seoul, Korea and was elected as the President of the Human Proteome Organization (HUPO) in 2009. In the December 2009 issue of the Current Pharmacogenomics and Personalized Medicine (CPPM), Dr. Paik explains the new field of pharmacoproteomics and the approaching wave of “proteomics diagnostics” in relation to personalized medicine, HUPO’s role in advancing proteomics technology applications, the HUPO Proteomics Standards Initiative, and the future impact of proteomics on medicine, science, and society. Additionally, he comments that (1) there is a need for launching a Gene-Centric Human Proteome Project (GCHPP) through which all representative proteins encoded by the genes can be identified and quantified in a specific cell and tissue and, (2) that the innovation frameworks within the diagnostics industry hitherto borrowed from the genetics age may require reevaluation in the case of proteomics, in order to facilitate the uptake of pharmacoproteomics innovations. He stresses the importance of biological/clinical plausibility driving the evolution of biotechnologies such as proteomics,instead of an isolated singular focus on the technology per se. Dr. Paik earned his Ph.D. in biochemistry from the University of Missouri-Columbia and carried out postdoctoral work at the Gladstone Foundation Laboratories of Cardiovascular Disease, University of California at San Francisco. In 2005, his research team at Yonsei University first identified and characterized the chemical structure of C. elegans dauer pheromone (daumone) which controls the aging process of this nematode. He is interviewed by a multidisciplinary team specializing in knowledge translation, technology regulation, health systems governance, and innovation analysis.
Resumo:
Proteasomes can exist in several different molecular forms in mammalian cells. The core 20S proteasome, containing the proteolytic sites, binds regulatory complexes at the ends of its cylindrical structure. Together with two 19S ATPase regulatory complexes it forms the 26S proteasome, which is involved in ubiquitin-dependent proteolysis. The 20S proteasome can also bind 11S regulatory complexes (REG, PA28) which play a role in antigen processing, as do the three variable c-interferoninducible catalytic b-subunits (e.g. LMP7). In the present study, we have investigated the subcellular distribution of the different forms of proteasomes using subunit speci®c antibodies. Both 20S proteasomes and their 19S regulatory complexes are found in nuclear, cytosolic and microsomal preparations isolated from rat liver. LMP7 was enriched approximately two-fold compared with core a-type proteasome subunits in the microsomal preparations. 20S proteasomes were more abundant than 26S proteasomes, both in liver and cultured cell lines. Interestingly, some signi®cant differences were observed in the distribution of different subunits of the 19S regulatory complexes. S12, and to a lesser extent p45, were found to be relatively enriched in nuclear fractions from rat liver, and immuno¯uorescent labelling of cultured cells with anti-p45 antibodies showed stronger labelling in the nucleus than in the cytoplasm. The REG was found to be localized predominantly in the cytoplasm. Three- to six-fold increases in the level of REG were observed following cinterferon treatment of cultured cells but c-interferon had no obvious effect on its subcellular distribution. These results demonstrate that different regulatory complexes and subpopulations of proteasomes have different distributions within mammalian cells and, therefore, that the distribution is more complex than has been reported for yeast proteasomes.
Resumo:
Mesenchymal stem cells (MSCs) are undifferentiated, multi-potent stem cells with the ability to renew. They can differentiate into many types of terminal cells, such as osteoblasts, chondrocytes, adipocytes, myocytes, and neurons. These cells have been applied in tissue engineering as the main cell type to regenerate new tissues. However, a number of issues remain concerning the use of MSCs, such as cell surface markers, the determining factors responsible for their differentiation to terminal cells, and the mechanisms whereby growth factors stimulate MSCs. In this chapter, we will discuss how proteomic techniques have contributed to our current knowledge and how they can be used to address issues currently facing MSC research. The application of proteomics has led to the identification of a special pattern of cell surface protein expression of MSCs. The technique has also contributed to the study of a regulatory network of MSC differentiation to terminal differentiated cells, including osteocytes, chondrocytes, adipocytes, neurons, cardiomyocytes, hepatocytes, and pancreatic islet cells. It has also helped elucidate mechanisms for growth factor–stimulated differentiation of MSCs. Proteomics can, however, not reveal the accurate role of a special pathway and must therefore be combined with other approaches for this purpose. A new generation of proteomic techniques have recently been developed, which will enable a more comprehensive study of MSCs. Keywords
Resumo:
The discovery of protein variation is an important strategy in disease diagnosis within the biological sciences. The current benchmark for elucidating information from multiple biological variables is the so called “omics” disciplines of the biological sciences. Such variability is uncovered by implementation of multivariable data mining techniques which come under two primary categories, machine learning strategies and statistical based approaches. Typically proteomic studies can produce hundreds or thousands of variables, p, per observation, n, depending on the analytical platform or method employed to generate the data. Many classification methods are limited by an n≪p constraint, and as such, require pre-treatment to reduce the dimensionality prior to classification. Recently machine learning techniques have gained popularity in the field for their ability to successfully classify unknown samples. One limitation of such methods is the lack of a functional model allowing meaningful interpretation of results in terms of the features used for classification. This is a problem that might be solved using a statistical model-based approach where not only is the importance of the individual protein explicit, they are combined into a readily interpretable classification rule without relying on a black box approach. Here we incorporate statistical dimension reduction techniques Partial Least Squares (PLS) and Principal Components Analysis (PCA) followed by both statistical and machine learning classification methods, and compared them to a popular machine learning technique, Support Vector Machines (SVM). Both PLS and SVM demonstrate strong utility for proteomic classification problems.
Resumo:
Background: Outside the mass-spectrometer, proteomics research does not take place in a vacuum. It is affected by policies on funding and research infrastructure. Proteomics research both impacts and is impacted by potential clinical applications. It provides new techniques & clinically relevant findings, but the possibilities for such innovations (and thus the perception of the potential for the field by funders) are also impacted by regulatory practices and the readiness of the health sector to incorporate proteomics-related tools & findings. Key to this process is how knowledge is translated. Methods: We present preliminary results from a multi-year social science project, funded by the Canadian Institutes of Health Research, on the processes and motivations for knowledge translation in the health sciences. The proteomics case within this wider study uses qualitative methods to examine the interplay between proteomics science and regulatory and policy makers regarding clinical applications of proteomics. Results: Adopting an interactive format to encourage conference attendees’ feedback, our poster focuses on deficits in effective knowledge translation strategies from the laboratory to policy, clinical, & regulatory arenas. An analysis of the interviews conducted to date suggests five significant choke points: the changing priorities of funding agencies; the complexity of proteomics research; the organisation of proteomics research; the relationship of proteomics to genomics and other omics sciences; and conflict over the appropriate role of standardisation. Conclusion: We suggest that engagement with aspects of knowledge translation, such as those mentioned above, is crucially important for the eventual clinical application ofproteomics science on any meaningful scale.
Resumo:
Gaining support for proteomics science requires effective knowledge translation. Knowledge translation (KT) processes turn the evidence generated by scientific discovery into recommendations for clinical applications, funding priorities, and policy/regulatory reforms. Clinicians, regulators, and funders need to understand why emerging proteomics knowledge is relevant, and what are the potential applications of that knowledge. A lack of clarity remains about what KT means.
Resumo:
To enhance the therapeutic efficacy and reduce the adverse effects of traditional Chinese medicine, practitioners often prescribe combinations of plant species and/or minerals, called formulae. Unfortunately, the working mechanisms of most of these compounds are difficult to determine and thus remain unknown. In an attempt to address the benefits of formulae based on current biomedical approaches, we analyzed the components of Yinchenhao Tang, a classical formula that has been shown to be clinically effective for treating hepatic injury syndrome. The three principal components of Yinchenhao Tang are Artemisia annua L., Gardenia jasminoids Ellis, and Rheum Palmatum L., whose major active ingredients are 6,7-dimethylesculetin (D), geniposide (G), and rhein (R), respectively. To determine the mechanisms underlying the efficacy of this formula, we conducted a systematic analysis of the therapeutic effects of the DGR compound using immunohistochemistry, biochemistry, metabolomics, and proteomics. Here, we report that the DGR combination exerts a more robust therapeutic effect than any one or two of the three individual compounds by hitting multiple targets in a rat model of hepatic injury. Thus, DGR synergistically causes intensified dynamic changes in metabolic biomarkers, regulates molecular networks through target proteins, has a synergistic/additive effect, and activates both intrinsic and extrinsic pathways.
Resumo:
Spatial organisation of proteins according to their function plays an important role in the specificity of their molecular interactions. Emerging proteomics methods seek to assign proteins to sub-cellular locations by partial separation of organelles and computational analysis of protein abundance distributions among partially separated fractions. Such methods permit simultaneous analysis of unpurified organelles and promise proteome-wide localisation in scenarios wherein perturbation may prompt dynamic re-distribution. Resolving organelles that display similar behavior during a protocol designed to provide partial enrichment represents a possible shortcoming. We employ the Localisation of Organelle Proteins by Isotope Tagging (LOPIT) organelle proteomics platform to demonstrate that combining information from distinct separations of the same material can improve organelle resolution and assignment of proteins to sub-cellular locations. Two previously published experiments, whose distinct gradients are alone unable to fully resolve six known protein-organelle groupings, are subjected to a rigorous analysis to assess protein-organelle association via a contemporary pattern recognition algorithm. Upon straightforward combination of single-gradient data, we observe significant improvement in protein-organelle association via both a non-linear support vector machine algorithm and partial least-squares discriminant analysis. The outcome yields suggestions for further improvements to present organelle proteomics platforms, and a robust analytical methodology via which to associate proteins with sub-cellular organelles.
Resumo:
Preserving the integrity of the skin's outermost layer (the epidermis) is vital for humans to thrive in hostile surroundings. Covering the entire body, the epidermis forms a thin but impenetrable cellular cordon that repels external assaults and blocks escape of water and electrolytes from within. This structure exists in a perpetual state of regeneration where the production of new cellular subunits at the base of the epidermis is offset by the release of terminally differentiated corneocytes from the surface. It is becoming increasingly clear that proteases hold vital roles in assembling and maintaining the epidermal barrier. More than 30 proteases are expressed by keratinocytes or infiltrating immune cells and the activity of each must be maintained within narrow limits and confined to the correct time and place. Accordingly, over- or under-exertion of proteolytic activity is a common factor in a multitude of skin disorders that range in severity from relatively mild to life-threatening. This review explores the current state of knowledge on the involvement of proteases in skin diseases and the latest findings from proteomic and transcriptomic studies focused on uncovering novel (patho)physiological roles for these enzymes.