309 resultados para Structural failures
em Queensland University of Technology - ePrints Archive
Resumo:
The occurrence of extreme water levels along low-lying, highly populated and/or developed coastlines can lead to considerable loss of life and billions of dollars of damage to coastal infrastructure. Therefore it is vitally important that the exceedance probabilities of extreme water levels are accurately evaluated to inform risk-based flood management, engineering and future land-use planning. This ensures the risk of catastrophic structural failures due to under-design or expensive wastes due to over-design are minimised. This paper estimates for the first time present day extreme water level exceedence probabilities around the whole coastline of Australia. A high-resolution depth averaged hydrodynamic model has been configured for the Australian continental shelf region and has been forced with tidal levels from a global tidal model and meteorological fields from a global reanalysis to generate a 61-year hindcast of water levels. Output from this model has been successfully validated against measurements from 30 tide gauge sites. At each numeric coastal grid point, extreme value distributions have been fitted to the derived time series of annual maxima and the several largest water levels each year to estimate exceedence probabilities. This provides a reliable estimate of water level probabilities around southern Australia; a region mainly impacted by extra-tropical cyclones. However, as the meteorological forcing used only weakly includes the effects of tropical cyclones, extreme water level probabilities are underestimated around the western, northern and north-eastern Australian coastline. In a companion paper we build on the work presented here and more accurately include tropical cyclone-induced surges in the estimation of extreme water level. The multi-decadal hindcast generated here has been used primarily to estimate extreme water level exceedance probabilities but could be used more widely in the future for a variety of other research and practical applications.
Resumo:
The incidence of major storm surges in the last decade have dramatically emphasized the immense destructive capabilities of extreme water level events, particularly when driven by severe tropical cyclones. Given this risk, it is vitally important that the exceedance probabilities of extreme water levels are accurately evaluated to inform risk-based flood and erosion management, engineering and for future land-use planning and to ensure the risk of catastrophic structural failures due to under-design or expensive wastes due to over-design are minimised. Australia has a long history of coastal flooding from tropical cyclones. Using a novel integration of two modeling techniques, this paper provides the first estimates of present day extreme water level exceedance probabilities around the whole coastline of Australia, and the first estimates that combine the influence of astronomical tides, storm surges generated by both extra-tropical and tropical cyclones, and seasonal and inter-annual variations in mean sea level. Initially, an analysis of tide gauge records has been used to assess the characteristics of tropical cyclone-induced surges around Australia. However, given the dearth (temporal and spatial) of information around much of the coastline, and therefore the inability of these gauge records to adequately describe the regional climatology, an observationally based stochastic tropical cyclone model has been developed to synthetically extend the tropical cyclone record to 10,000 years. Wind and pressure fields derived for these synthetically generated events have then been used to drive a hydrodynamic model of the Australian continental shelf region with annual maximum water levels extracted to estimate exceedance probabilities around the coastline. To validate this methodology, selected historic storm surge events have been simulated and resultant storm surges compared with gauge records. Tropical cyclone induced exceedance probabilities have been combined with estimates derived from a 61-year water level hindcast described in a companion paper to give a single estimate of present day extreme water level probabilities around the whole coastline of Australia. Results of this work are freely available to coastal engineers, managers and researchers via a web-based tool (www.sealevelrise.info). The described methodology could be applied to other regions of the world, like the US east coast, that are subject to both extra-tropical and tropical cyclones.
Resumo:
As a part of vital infrastructure and transportation networks, bridge structures must function safely at all times. However, due to heavier and faster moving vehicular loads and function adjustment, such as Busway accommodation, many bridges are now operating at an overload beyond their design capacity. Additionally, the huge renovation and replacement costs always make the infrastructure owners difficult to undertake. Structural health monitoring (SHM) is set to assess condition and foresee probable failures of designated bridge(s), so as to monitor the structural health of the bridges. The SHM systems proposed recently are incorporated with Vibration-Based Damage Detection (VBDD) techniques, Statistical Methods and Signal processing techniques and have been regarded as efficient and economical ways to solve the problem. The recent development in damage detection and condition assessment techniques based on VBDD and statistical methods are reviewed. The VBDD methods based on changes in natural frequencies, curvature/strain modes, modal strain energy (MSE) dynamic flexibility, artificial neural networks (ANN) before and after damage and other signal processing methods like Wavelet techniques and empirical mode decomposition (EMD) / Hilbert spectrum methods are discussed here.
Resumo:
Structural health monitoring (SHM) is the term applied to the procedure of monitoring a structure’s performance, assessing its condition and carrying out appropriate retrofitting so that it performs reliably, safely and efficiently. Bridges form an important part of a nation’s infrastructure. They deteriorate due to age and changing load patterns and hence early detection of damage helps in prolonging the lives and preventing catastrophic failures. Monitoring of bridges has been traditionally done by means of visual inspection. With recent developments in sensor technology and availability of advanced computing resources, newer techniques have emerged for SHM. Acoustic emission (AE) is one such technology that is attracting attention of engineers and researchers all around the world. This paper discusses the use of AE technology in health monitoring of bridge structures, with a special focus on analysis of recorded data. AE waves are stress waves generated by mechanical deformation of material and can be recorded by means of sensors attached to the surface of the structure. Analysis of the AE signals provides vital information regarding the nature of the source of emission. Signal processing of the AE waveform data can be carried out in several ways and is predominantly based on time and frequency domains. Short time Fourier transform and wavelet analysis have proved to be superior alternatives to traditional frequency based analysis in extracting information from recorded waveform. Some of the preliminary results of the application of these analysis tools in signal processing of recorded AE data will be presented in this paper.
Resumo:
Crest-fixed steel claddings made of thin, high strength steel often suffer from local pull-through failures at their screw connections during high wind events such as storms and hurricanes. Adequate design provisions are not available for these cladding systems except for the expensive testing provisions. Since the local pull-through failures in the less ductile steel claddings are initiated by transverse splitting at the fastener holes, numerical studies have not been able to determine the pull-through failure loads. Numerical studies could be used if a reliable splitting criterion is available. Therefore a series of two-span cladding and small scale tests was conducted on a range of crest-fixed steel cladding systems under simulated wind uplift loads. The strains in the sheeting around the critical central support screw fastener holes were measured until the pull-through failure occurred. This paper presents the details of the experimental investigation and the results including a strain criterion for the local pull-through failures in crest-fixed steel claddings.
Resumo:
Bridges are an important part of society's infrastructure and reliable methods are necessary to monitor them and ensure their safety and efficiency. Bridges deteriorate with age and early detection of damage helps in prolonging the lives and prevent catastrophic failures. Most bridges still in used today were built decades ago and are now subjected to changes in load patterns, which can cause localized distress and if not corrected can result in bridge failure. In the past, monitoring of structures was usually done by means of visual inspection and tapping of the structures using a small hammer. Recent advancements of sensors and information technologies have resulted in new ways of monitoring the performance of structures. This paper briefly describes the current technologies used in bridge structures condition monitoring with its prime focus in the application of acoustic emission (AE) technology in the monitoring of bridge structures and its challenges.
Resumo:
Structural health is a vital aspect of infrastructure sustainability. As a part of a vital infrastructure and transportation network, bridge structures must function safely at all times. However, due to heavier and faster moving vehicular loads and function adjustment, such as Busway accommodation, many bridges are now operating at an overload beyond their design capacity. Additionally, the huge renovation and replacement costs are a difficult burden for infrastructure owners. The structural health monitoring (SHM) systems proposed recently are incorporated with vibration-based damage detection techniques, statistical methods and signal processing techniques and have been regarded as efficient and economical ways to assess bridge condition and foresee probable costly failures. In this chapter, the recent developments in damage detection and condition assessment techniques based on vibration-based damage detection and statistical methods are reviewed. The vibration-based damage detection methods based on changes in natural frequencies, curvature or strain modes, modal strain energy, dynamic flexibility, artificial neural networks, before and after damage, and other signal processing methods such as Wavelet techniques, empirical mode decomposition and Hilbert spectrum methods are discussed in this chapter.
Resumo:
Structural Health Monitoring (SHM) is defined as the use of on-structure sensing system to monitor the performance of the structure and evaluate its health state. Recent bridge failures, such as the collapses of the 1-35W Highway Bridge in USA, the collapse of the Can Tho Bridge in Vietnam and the Xijiang River Bridge in the Mainland China, all of which happened in the year 2007, have alerted the importance of structural health monitoring. This book presents a background of SHM technologies together with its latest development and successful applications. It is a book launched to celebrate the establishment of the Australian Network of Structural Health Monitoring (ANSHM). The network comprising leading SHM experts in Australia promotes and advances SHM research, application, education and development in Australia.
Resumo:
Bridges are valuable assets of every nation. They deteriorate with age and often are subjected to additional loads or different load patterns than originally designed for. These changes in loads can cause localized distress and may result in bridge failure if not corrected in time. Early detection of damage and appropriate retrofitting will aid in preventing bridge failures. Large amounts of money are spent in bridge maintenance all around the world. A need exists for a reliable technology capable of monitoring the structural health of bridges, thereby ensuring they operate safely and efficiently during the whole intended lives. Monitoring of bridges has been traditionally done by means of visual inspection. Visual inspection alone is not capable of locating and identifying all signs of damage, hence a variety of structural health monitoring (SHM) techniques is used regularly nowadays to monitor performance and to assess condition of bridges for early damage detection. Acoustic emission (AE) is one technique that is finding an increasing use in SHM applications of bridges all around the world. The chapter starts with a brief introduction to structural health monitoring and techniques commonly used for monitoring purposes. Acoustic emission technique, wave nature of AE phenomenon, previous applications and limitations and challenges in the use as a SHM technique are also discussed. Scope of the project and work carried out will be explained, followed by some recommendations of work planned in future.
Resumo:
Crest-fixed steel claddings made of thin, high strength steel often suffer from local pull-through failures at their screw connections during high wind events such as storms and hurricanes. Currently there aren't any adequate design provisions for these cladding systems except for the expensive testing provisions. Since the local pull-through failures in the less ductile steel claddings are initiated by transverse splitting at the fastener hole, analytical studies have not been able to determine the pull-through failure loads. Analytical studies could be used if a reliable splitting criterion is available. Therefore a series of two-span cladding tests was conducted on a range of crest-fixed steel cladding systems under simulated wind uplift loads. The strains in the sheeting around the critical fastener holes were measured until the pull-through failure. This paper presents the details of the experimental investigation and the results including a strain criterion for the local pull-through failure.
Resumo:
The purpose of this research was to develop and test a multicausal model of the individual characteristics associated with academic success in first-year Australian university students. This model comprised the constructs of: previous academic performance, achievement motivation, self-regulatory learning strategies, and personality traits, with end-of-semester grades the dependent variable of interest. The study involved the distribution of a questionnaire, which assessed motivation, self-regulatory learning strategies and personality traits, to 1193 students at the start of their first year at university. Students' academic records were accessed at the end of their first year of study to ascertain their first and second semester grades. This study established that previous high academic performance, use of self-regulatory learning strategies, and being introverted and agreeable, were indicators of academic success in the first semester of university study. Achievement motivation and the personality trait of conscientiousness were indirectly related to first semester grades, through the influence they had on the students' use of self-regulatory learning strategies. First semester grades were predictive of second semester grades. This research provides valuable information for both educators and students about the factors intrinsic to the individual that are associated with successful performance in the first year at university.