480 resultados para Structural engineering -- Earthquake effects

em Queensland University of Technology - ePrints Archive


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A teaching and learning development project is currently under way at Queensland University of Technology to develop advanced technology videotapes for use with the delivery of structural engineering courses. These tapes consist of integrated computer and laboratory simulations of important concepts, and behaviour of structures and their components for a number of structural engineering subjects. They will be used as part of the regular lectures and thus will not only improve the quality of lectures and learning environment, but also will be able to replace the ever-dwindling laboratory teaching in these subjects. The use of these videotapes, developed using advanced computer graphics, data visualization and video technologies, will enrich the learning process of the current diverse engineering student body. This paper presents the details of this new method, the methodology used, the results and evaluation in relation to one of the structural engineering subjects, steel structures.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper investigates the response of multi-storey structures under simulated earthquake loads with friction dampers, viscoelastic dampers and combined friction-viscoelastic damping devices strategically located within shear walls. Consequently, evaluations are made as to how the damping systems affect the seismic response of these structures with respect to deflections and accelerations. In particular, this paper concentrates on the effects of damper types, configurations and their locations within the cut-outs of shear walls. The initial stiffness of the cut out section of the shear wall is removed and replaced by the stiffness and damping of the device. Influence of parameters of damper properties such as stiffness, damping coefficient, location, configuration and size are studied and evaluated using results obtained under several different earthquake scenarios. Structural models with cut outs at different heights are treated in order to establish the effectiveness of the dampers and their optimal placement. This conceptual study has demonstrated the feasibility of mitigating the seismic response of building structures by using embedded dampers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Spatial variation of seismic ground motions is caused by incoherence effect, wave passage, and local site conditions. This study focuses on the effects of spatial variation of earthquake ground motion on the responses of adjacent reinforced concrete (RC) frame structures. The adjacent buildings are modeled considering soil-structure interaction (SSI) so that the buildings can be interacted with each other under uniform and non-uniform ground motions. Three different site classes are used to model the soil layers of SSI system. Based on fast Fourier transformation (FFT), spatially correlated non-uniform ground motions are generated compatible with known power spectrum density function (PSDF) at different locations. Numerical analyses are carried out to investigate the displacement responses and the absolute maximum base shear forces of adjacent structures subjected to spatially varying ground motions. The results are presented in terms of related parameters affecting the structural response using three different types of soil site classes. The responses of adjacent structures have changed remarkably due to spatial variation of ground motions. The effect can be significant on rock site rather than clay site.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Based on Newmark-β method, a structural vibration response is predicted. Through finding the appropriate control force parameters within certain ranges to optimize the objective function, the predictive control of the structural vibration is achieved. At the same time, the numerical simulation analysis of a two-storey frame structure with magneto-rheological (MR) dampers under earthquake records is carried out, and the parameter influence on structural vibration reduction is discussed. The results demonstrate that the semi-active control based on Newmark-β predictive algorithm is better than the classical control strategy based on full-state feedback control and has remarkable advantages of structural vibration reduction and control robustness.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The flexural capacity of of a new cold-formed hollow flange channel section known as LiteSteel beam (LSB) is limited by lateral distortional buckling for intermediate spans, which is characterised by simultaneous lateral deflection, twist and web distortion. Recent research has developed suitable design rules for the member capacity of LSBs. However, they are limited to a uniform moment distribution that rarely exists in practice. Many steel design codes have adopted equivalent uniform moment distribution factors to accommodate the effect of non-uniform moment distributions in design. But they were derived mostly based on the data for conventional hot-rolled, doubly symmetric I-beams subject to lateral torsional buckling. The effect of moment distribution for LSBs, and the suitability of the current steel design code rules to include this effect for LSBs are not yet known. This paper presents the details of a research study based on finite element analyses of the lateral buckling strength of simply supported LSBs subject to moment gradient effects. It also presents the details of a number of LSB lateral buckling experiments undertaken to validate the results of finite element analyses. Finally, it discusses the suitability of the current design methods, and provides design recommendations for simply supported LSBs subject to moment gradient effects.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper treats the seismic mitigation of medium rise frame-shear wall structures and building facade systems using passive damping devices. The frame shear wall structures have embedded viscoelastic and friction dampers in different configurations and placed in various locations in the structure. Influence of damper type, configuration and location are investigated. Results for tip deflections which provide an overall evaluation of the seismic response of the structure, are determined. Seismic mitigation of building facade systems in which visco-elastic dampers are fitted at the horizontal connections between the facades and the frame, instead of the traditional rigid connections, are also treated. Finite element techniques are used to model and analyse the two structural systems under different earthquake loadings, scaled to the same peak ground acceleration for meaningful comparison of responses. Results demonstrate the feasibility of these techniques for seismic mitigation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Human activity-induced vibrations in slender structural sys tems become apparent in many different excitation modes and consequent action effects that cause discomfort to occupants, crowd panic and damage to public infrastructure. Resulting loss of public confidence in safety of structures, economic losses, cost of retrofit and repairs can be significant. Advanced computational and visualisation techniques enable engineers and architects to evolve bold and innovative structural forms, very often without precedence. New composite and hybrid materials that are making their presence in structural systems lack historical evidence of satisfactory performance over anticipated design life. These structural systems are susceptible to multi-modal and coupled excitation that are very complex and have inadequate design guidance in the present codes and good practice guides. Many incidents of amplified resonant response have been reported in buildings, footbridges, stadia a nd other crowded structures with adverse consequences. As a result, attenuation of human-induced vibration of innovative and slender structural systems very ofte n requires special studies during the design process. Dynamic activities possess variable characteristics and thereby induce complex responses in structures that are sensitive to parametric variations. Rigorous analytical techniques are available for investigation of such complex actions and responses to produce acceptable performance in structural systems. This paper presents an overview and a critique of existing code provisions for human-induced vibration followed by studies on the performance of three contrasting structural systems that exhibit complex vibration. The dynamic responses of these systems under human-induced vibrations have been carried out using experimentally validated computer simulation techniques. The outcomes of these studies will have engineering applications for safe and sustainable structures and a basis for developing design guidance.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Daring human nature has already led to the construction of high-rise buildings in naturally challenging geological regions and in worse environments of the world. However; literature review divulges that there is a lag in research of certain generic principles and rules for the prediction of lateral movement in multistorey construction. The present competitive trend orders the best possible used of available construction material and resources. Hence; the mixed used of reinforced concrete with structural steel is gaining prevalence day by day. This paper investigates the effects of Seismic load on composite multistorey building provided with core wall and trusses through FEM modelling. The results showed that increased rigidity corresponds to lower period of vibration and hence higher seismic forces. Since Seismic action is a function of mass and response acceleration, therefore; mass increment generate higher earthquake load and thus cause higher impact base shear and overturning movement. Whereas; wind force depends on building exposed, larger the plan dimension greater is the wind impact. Nonetheless; outriggers trusses noticeably contribute, in improving the serviceability of structure subjected to wind and earthquake forces.