153 resultados para Stocks index benchmark
em Queensland University of Technology - ePrints Archive
Resumo:
This study develops a life-cycle model where investors make investment decisions in a realistic environment. Model results show that personal illiquid projects (housing and children), fixed costs (once-off/per-period participation costs plus variable/fixed transaction costs) and endogenous risky human capital (with permanent, transitory and disastrous shocks) together are able to address both the non-participation puzzle and the age-effects puzzle. Empirical implications of the model are examined using Heckman’s two-step method with the latest five Surveys of Consumer Finance (SCF). Regression results show that liquidity, informational cost and human capital are indeed the major determinants of participation and asset allocation decisions at different stages of an investor’s life.
Resumo:
In this study we propose a virtual index for measuring the relative innovativeness of countries. Using a multistage virtual benchmarking process, the best and rational benchmark is extracted for inefficient ISs. Furthermore, Tobit and Ordinary Least Squares (OLS) regression models are used to investigate the likelihood of changes in inefficiencies by investigating country-specific factors. The empirical results relating to the virtual benchmarking process suggest that the OLS regression model would better explain changes in the performance of innovation- inefficient countries.
Provincial mortality in South Africa, 2000 - priority-setting for now and a benchmark for the future
Resumo:
Background. Cause-of-death statistics are an essential component of health information. Despite improvements, underregistration and misclassification of causes make it difficult to interpret the official death statistics. Objective. To estimate consistent cause-specific death rates for the year 2000 and to identify the leading causes of death and premature mortality in the provinces. Methods. Total number of deaths and population size were estimated using the Actuarial Society of South Africa ASSA2000 AIDS and demographic model. Cause-of-death profiles based on Statistics South Africa's 15% sample, adjusted for misclassification of deaths due to ill-defined causes and AIDS deaths due to indicator conditions, were applied to the total deaths by age and sex. Age-standardised rates and years of life lost were calculated using age weighting and discounting. Results. Life expectancy in KwaZulu-Natal and Mpumalanga is about 10 years lower than that in the Western Cape, the province with the lowest mortality rate. HIV/AIDS is the leading cause of premature mortality for all provinces. Mortality due to pre-transitional causes, such as diarrhoea, is more pronounced in the poorer and more rural provinces. In contrast, non-communicable disease mortality is similar across all provinces, although the cause profiles differ. Injury mortality rates are particularly high in provinces with large metropolitan areas and in Mpumalanga. Conclusion. The quadruple burden experienced in all provinces requires a broad range of interventions, including improved access to health care; ensuring that basic needs such as those related to water and sanitation are met; disease and injury prevention; and promotion of a healthy lifestyle. High death rates as a result of HIV/AIDS highlight the urgent need to accelerate the implementation of the treatment and prevention plan. In addition, there is an urgent need to improve the cause-of-death data system to provide reliable cause-of-death statistics at health district level.
Resumo:
Index tracking is an investment approach where the primary objective is to keep portfolio return as close as possible to a target index without purchasing all index components. The main purpose is to minimize the tracking error between the returns of the selected portfolio and a benchmark. In this paper, quadratic as well as linear models are presented for minimizing the tracking error. The uncertainty is considered in the input data using a tractable robust framework that controls the level of conservatism while maintaining linearity. The linearity of the proposed robust optimization models allows a simple implementation of an ordinary optimization software package to find the optimal robust solution. The proposed model of this paper employs Morgan Stanley Capital International Index as the target index and the results are reported for six national indices including Japan, the USA, the UK, Germany, Switzerland and France. The performance of the proposed models is evaluated using several financial criteria e.g. information ratio, market ratio, Sharpe ratio and Treynor ratio. The preliminary results demonstrate that the proposed model lowers the amount of tracking error while raising values of portfolio performance measures.
Resumo:
Recent data indicate that levels of overweight and obesity are increasing at an alarming rate throughout the world. At a population level (and commonly to assess individual health risk), the prevalence of overweight and obesity is calculated using cut-offs of the Body Mass Index (BMI) derived from height and weight. Similarly, the BMI is also used to classify individuals and to provide a notional indication of potential health risk. It is likely that epidemiologic surveys that are reliant on BMI as a measure of adiposity will overestimate the number of individuals in the overweight (and slightly obese) categories. This tendency to misclassify individuals may be more pronounced in athletic populations or groups in which the proportion of more active individuals is higher. This differential is most pronounced in sports where it is advantageous to have a high BMI (but not necessarily high fatness). To illustrate this point we calculated the BMIs of international professional rugby players from the four teams involved in the semi-finals of the 2003 Rugby Union World Cup. According to the World Health Organisation (WHO) cut-offs for BMI, approximately 65% of the players were classified as overweight and approximately 25% as obese. These findings demonstrate that a high BMI is commonplace (and a potentially desirable attribute for sport performance) in professional rugby players. An unanswered question is what proportion of the wider population, classified as overweight (or obese) according to the BMI, is misclassified according to both fatness and health risk? It is evident that being overweight should not be an obstacle to a physically active lifestyle. Similarly, a reliance on BMI alone may misclassify a number of individuals who might otherwise have been automatically considered fat and/or unfit.