125 resultados para Stochastic Integral

em Queensland University of Technology - ePrints Archive


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The numerical solution of stochastic differential equations (SDEs) has been focused recently on the development of numerical methods with good stability and order properties. These numerical implementations have been made with fixed stepsize, but there are many situations when a fixed stepsize is not appropriate. In the numerical solution of ordinary differential equations, much work has been carried out on developing robust implementation techniques using variable stepsize. It has been necessary, in the deterministic case, to consider the "best" choice for an initial stepsize, as well as developing effective strategies for stepsize control-the same, of course, must be carried out in the stochastic case. In this paper, proportional integral (PI) control is applied to a variable stepsize implementation of an embedded pair of stochastic Runge-Kutta methods used to obtain numerical solutions of nonstiff SDEs. For stiff SDEs, the embedded pair of the balanced Milstein and balanced implicit method is implemented in variable stepsize mode using a predictive controller for the stepsize change. The extension of these stepsize controllers from a digital filter theory point of view via PI with derivative (PID) control will also be implemented. The implementations show the improvement in efficiency that can be attained when using these control theory approaches compared with the regular stepsize change strategy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In Burrage and Burrage [1] it was shown that by introducing a very general formulation for stochastic Runge-Kutta methods, the previous strong order barrier of order one could be broken without having to use higher derivative terms. In particular, methods of strong order 1.5 were developed in which a Stratonovich integral of order one and one of order two were present in the formulation. In this present paper, general order results are proven about the maximum attainable strong order of these stochastic Runge-Kutta methods (SRKs) in terms of the order of the Stratonovich integrals appearing in the Runge-Kutta formulation. In particular, it will be shown that if an s-stage SRK contains Stratonovich integrals up to order p then the strong order of the SRK cannot exceed min{(p + 1)/2, (s - 1)/2), p greater than or equal to 2, s greater than or equal to 3 or 1 if p = 1.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In estuaries and natural water channels, the estimate of velocity and dispersion coefficients is critical to the knowledge of scalar transport and mixing. This estimate is rarely available experimentally at sub-tidal time scale in shallow water channels where high frequency is required to capture its spatio-temporal variation. This study estimates Lagrangian integral scales and autocorrelation curves, which are key parameters for obtaining velocity fluctuations and dispersion coefficients, and their spatio-temporal variability from deployments of Lagrangian drifters sampled at 10 Hz for a 4-hour period. The power spectral densities of the velocities between 0.0001 and 0.8 Hz were well fitted with a slope of 5/3 predicted by Kolmogorov’s similarity hypothesis within the inertial subrange, and were similar to the Eulerian power spectral previously observed within the estuary. The result showed that large velocity fluctuations determine the magnitude of the integral time scale, TL. Overlapping of short segments improved the stability of the estimate of TL by taking advantage of the redundant data included in the autocorrelation function. The integral time scales were about 20 s and varied by up to a factor of 8. These results are essential inputs for spatial binning of velocities, Lagrangian stochastic modelling and single particle analysis of the tidal estuary.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aijt-Sahalia (2002) introduced a method to estimate transitional probability densities of di®usion processes by means of Hermite expansions with coe±cients determined by means of Taylor series. This note describes a numerical procedure to ¯nd these coe±cients based on the calculation of moments. One advantage of this procedure is that it can be used e®ectively when the mathematical operations required to ¯nd closed-form expressions for these coe±cients are otherwise infeasible.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Reliable budget/cost estimates for road maintenance and rehabilitation are subjected to uncertainties and variability in road asset condition and characteristics of road users. The CRC CI research project 2003-029-C ‘Maintenance Cost Prediction for Road’ developed a method for assessing variation and reliability in budget/cost estimates for road maintenance and rehabilitation. The method is based on probability-based reliable theory and statistical method. The next stage of the current project is to apply the developed method to predict maintenance/rehabilitation budgets/costs of large networks for strategic investment. The first task is to assess the variability of road data. This report presents initial results of the analysis in assessing the variability of road data. A case study of the analysis for dry non reactive soil is presented to demonstrate the concept in analysing the variability of road data for large road networks. In assessing the variability of road data, large road networks were categorised into categories with common characteristics according to soil and climatic conditions, pavement conditions, pavement types, surface types and annual average daily traffic. The probability distributions, statistical means, and standard deviation values of asset conditions and annual average daily traffic for each type were quantified. The probability distributions and the statistical information obtained in this analysis will be used to asset the variation and reliability in budget/cost estimates in later stage. Generally, we usually used mean values of asset data of each category as input values for investment analysis. The variability of asset data in each category is not taken into account. This analysis method demonstrated that it can be used for practical application taking into account the variability of road data in analysing large road networks for maintenance/rehabilitation investment analysis.