537 resultados para Statistical decision.

em Queensland University of Technology - ePrints Archive


Relevância:

60.00% 60.00%

Publicador:

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The aim of this study was to identify and describe the types of errors in clinical reasoning that contribute to poor diagnostic performance at different levels of medical training and experience. Three cohorts of subjects, second- and fourth- (final) year medical students and a group of general practitioners, completed a set of clinical reasoning problems. The responses of those whose scores fell below the 25th centile were analysed to establish the stage of the clinical reasoning process - identification of relevant information, interpretation or hypothesis generation - at which most errors occurred and whether this was dependent on problem difficulty and level of medical experience. Results indicate that hypothesis errors decrease as expertise increases but that identification and interpretation errors increase. This may be due to inappropriate use of pattern recognition or to failure of the knowledge base. Furthermore, although hypothesis errors increased in line with problem difficulty, identification and interpretation errors decreased. A possible explanation is that as problem difficulty increases, subjects at all levels of expertise are less able to differentiate between relevant and irrelevant clinical features and so give equal consideration to all information contained within a case. It is concluded that the development of clinical reasoning in medical students throughout the course of their pre-clinical and clinical education may be enhanced by both an analysis of the clinical reasoning process and a specific focus on each of the stages at which errors commonly occur.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background The problem of silent multiple comparisons is one of the most difficult statistical problems faced by scientists. It is a particular problem for investigating a one-off cancer cluster reported to a health department because any one of hundreds, or possibly thousands, of neighbourhoods, schools, or workplaces could have reported a cluster, which could have been for any one of several types of cancer or any one of several time periods. Methods This paper contrasts the frequentist approach with a Bayesian approach for dealing with silent multiple comparisons in the context of a one-off cluster reported to a health department. Two published cluster investigations were re-analysed using the Dunn-Sidak method to adjust frequentist p-values and confidence intervals for silent multiple comparisons. Bayesian methods were based on the Gamma distribution. Results Bayesian analysis with non-informative priors produced results similar to the frequentist analysis, and suggested that both clusters represented a statistical excess. In the frequentist framework, the statistical significance of both clusters was extremely sensitive to the number of silent multiple comparisons, which can only ever be a subjective "guesstimate". The Bayesian approach is also subjective: whether there is an apparent statistical excess depends on the specified prior. Conclusion In cluster investigations, the frequentist approach is just as subjective as the Bayesian approach, but the Bayesian approach is less ambitious in that it treats the analysis as a synthesis of data and personal judgements (possibly poor ones), rather than objective reality. Bayesian analysis is (arguably) a useful tool to support complicated decision-making, because it makes the uncertainty associated with silent multiple comparisons explicit.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Risks and uncertainties are inevitable in engineering projects and infrastructure investments. Decisions about investment in infrastructure such as for maintenance, rehabilitation and construction works can pose risks, and may generate significant impacts on social, cultural, environmental and other related issues. This report presents the results of a literature review of current practice in identifying, quantifying and managing risks and predicting impacts as part of the planning and assessment process for infrastructure investment proposals. In assessing proposals for investment in infrastructure, it is necessary to consider social, cultural and environmental risks and impacts to the overall community, as well as financial risks to the investor. The report defines and explains the concept of risk and uncertainty, and describes the three main methodology approaches to the analysis of risk and uncertainty in investment planning for infrastructure, viz examining a range of scenarios or options, sensitivity analysis, and a statistical probability approach, listed here in order of increasing merit and complexity. Forecasts of costs, benefits and community impacts of infrastructure are recognised as central aspects of developing and assessing investment proposals. Increasingly complex modelling techniques are being used for investment evaluation. The literature review identified forecasting errors as the major cause of risk. The report contains a summary of the broad nature of decision-making tools used by governments and other organisations in Australia, New Zealand, Europe and North America, and shows their overall approach to risk assessment in assessing public infrastructure proposals. While there are established techniques to quantify financial and economic risks, quantification is far less developed for political, social and environmental risks and impacts. The report contains a summary of the broad nature of decision-making tools used by governments and other organisations in Australia, New Zealand, Europe and North America, and shows their overall approach to risk assessment in assessing public infrastructure proposals. While there are established techniques to quantify financial and economic risks, quantification is far less developed for political, social and environmental risks and impacts. For risks that cannot be readily quantified, assessment techniques commonly include classification or rating systems for likelihood and consequence. The report outlines the system used by the Australian Defence Organisation and in the Australian Standard on risk management. After each risk is identified and quantified or rated, consideration can be given to reducing the risk, and managing any remaining risk as part of the scope of the project. The literature review identified use of risk mapping techniques by a North American chemical company and by the Australian Defence Organisation. This literature review has enabled a risk assessment strategy to be developed, and will underpin an examination of the feasibility of developing a risk assessment capability using a probability approach.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This thesis investigates profiling and differentiating customers through the use of statistical data mining techniques. The business application of our work centres on examining individuals’ seldomly studied yet critical consumption behaviour over an extensive time period within the context of the wireless telecommunication industry; consumption behaviour (as oppose to purchasing behaviour) is behaviour that has been performed so frequently that it become habitual and involves minimal intentions or decision making. Key variables investigated are the activity initialised timestamp and cell tower location as well as the activity type and usage quantity (e.g., voice call with duration in seconds); and the research focuses are on customers’ spatial and temporal usage behaviour. The main methodological emphasis is on the development of clustering models based on Gaussian mixture models (GMMs) which are fitted with the use of the recently developed variational Bayesian (VB) method. VB is an efficient deterministic alternative to the popular but computationally demandingMarkov chainMonte Carlo (MCMC) methods. The standard VBGMMalgorithm is extended by allowing component splitting such that it is robust to initial parameter choices and can automatically and efficiently determine the number of components. The new algorithm we propose allows more effective modelling of individuals’ highly heterogeneous and spiky spatial usage behaviour, or more generally human mobility patterns; the term spiky describes data patterns with large areas of low probability mixed with small areas of high probability. Customers are then characterised and segmented based on the fitted GMM which corresponds to how each of them uses the products/services spatially in their daily lives; this is essentially their likely lifestyle and occupational traits. Other significant research contributions include fitting GMMs using VB to circular data i.e., the temporal usage behaviour, and developing clustering algorithms suitable for high dimensional data based on the use of VB-GMM.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

It is important to promote a sustainable development approach to ensure that economic, environmental and social developments are maintained in balance. Sustainable development and its implications are not just a global concern, it also affects Australia. In particular, rural Australian communities are facing various economic, environmental and social challenges. Thus, the need for sustainable development in rural regions is becoming increasingly important. To promote sustainable development, proper frameworks along with the associated tools optimised for the specific regions, need to be developed. This will ensure that the decisions made for sustainable development are evidence based, instead of subjective opinions. To address these issues, Queensland University of Technology (QUT), through an Australian Research Council (ARC) linkage grant, has initiated research into the development of a Rural Statistical Sustainability Framework (RSSF) to aid sustainable decision making in rural Queensland. This particular branch of the research developed a decision support tool that will become the integrating component of the RSSF. This tool is developed on the web-based platform to allow easy dissemination, quick maintenance and to minimise compatibility issues. The tool is developed based on MapGuide Open Source and it follows the three-tier architecture: Client tier, Web tier and the Server tier. The developed tool is interactive and behaves similar to a familiar desktop-based application. It has the capability to handle and display vector-based spatial data and can give further visual outputs using charts and tables. The data used in this tool is obtained from the QUT research team. Overall the tool implements four tasks to help in the decision-making process. These are the Locality Classification, Trend Display, Impact Assessment and Data Entry and Update. The developed tool utilises open source and freely available software and accounts for easy extensibility and long-term sustainability.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background The four principles of Beauchamp and Childress - autonomy, non-maleficence, beneficence and justice - have been extremely influential in the field of medical ethics, and are fundamental for understanding the current approach to ethical assessment in health care. This study tests whether these principles can be quantitatively measured on an individual level, and then subsequently if they are used in the decision making process when individuals are faced with ethical dilemmas. Methods The Analytic Hierarchy Process was used as a tool for the measurement of the principles. Four scenarios, which involved conflicts between the medical ethical principles, were presented to participants and they made judgments about the ethicality of the action in the scenario, and their intentions to act in the same manner if they were in the situation. Results Individual preferences for these medical ethical principles can be measured using the Analytic Hierarchy Process. This technique provides a useful tool in which to highlight individual medical ethical values. On average individuals have a significant preference for non-maleficence over the other principles, however, and perhaps counter-intuitively, this preference does not seem to relate to applied ethical judgements in specific ethical dilemmas. Conclusions People state they value these medical ethical principles but they do not actually seem to use them directly in the decision making process. The reasons for this are explained through the lack of a behavioural model to account for the relevant situational factors not captured by the principles. The limitations of the principles in predicting ethical decision making are discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Maternal deaths have been a critical issue for women living in rural and remote areas. The need to travel long distances, the shortage of primary care providers such as physicians, specialists and nurses, and the closing of small hospitals have been problems identified in many rural areas. Some research work has been undertaken and a few techniques have been developed to remotely measure the physiological condition of pregnant women through sophisticated ultrasound equipment. There are numerous ways to reduce maternal deaths, and an important step is to select the right approaches to achieving this reduction. One such approach is the provision of decision support systems in rural and remote areas. Decision support systems (DSSs) have already shown a great potential in many health fields. This thesis proposes an ingenious decision support system (iDSS) based on the methodology of survey instruments and identification of significant variables to be used in iDSS using statistical analysis. A survey was undertaken with pregnant women and factorial experimental design was chosen to acquire sample size. Variables with good reliability in any one of the statistical techniques such as Chi-square, Cronbach’s á and Classification Tree were incorporated in the iDSS. The decision support system was developed with significant variables such as: Place of residence, Seeing the same doctor, Education, Tetanus injection, Baby weight, Previous baby born, Place of birth, Assisted delivery, Pregnancy parity, Doctor visits and Occupation. The ingenious decision support system was implemented with Visual Basic as front end and Microsoft SQL server management as backend. Outcomes of the ingenious decision support system include advice on Symptoms, Diet and Exercise to pregnant women. On conditional system was sent and validated by the gynaecologist. Another outcome of ingenious decision support system was to provide better pregnancy health awareness and reduce long distance travel, especially for women in rural areas. The proposed system has qualities such as usefulness, accuracy and accessibility.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Quality oriented management systems and methods have become the dominant business and governance paradigm. From this perspective, satisfying customers’ expectations by supplying reliable, good quality products and services is the key factor for an organization and even government. During recent decades, Statistical Quality Control (SQC) methods have been developed as the technical core of quality management and continuous improvement philosophy and now are being applied widely to improve the quality of products and services in industrial and business sectors. Recently SQC tools, in particular quality control charts, have been used in healthcare surveillance. In some cases, these tools have been modified and developed to better suit the health sector characteristics and needs. It seems that some of the work in the healthcare area has evolved independently of the development of industrial statistical process control methods. Therefore analysing and comparing paradigms and the characteristics of quality control charts and techniques across the different sectors presents some opportunities for transferring knowledge and future development in each sectors. Meanwhile considering capabilities of Bayesian approach particularly Bayesian hierarchical models and computational techniques in which all uncertainty are expressed as a structure of probability, facilitates decision making and cost-effectiveness analyses. Therefore, this research investigates the use of quality improvement cycle in a health vii setting using clinical data from a hospital. The need of clinical data for monitoring purposes is investigated in two aspects. A framework and appropriate tools from the industrial context are proposed and applied to evaluate and improve data quality in available datasets and data flow; then a data capturing algorithm using Bayesian decision making methods is developed to determine economical sample size for statistical analyses within the quality improvement cycle. Following ensuring clinical data quality, some characteristics of control charts in the health context including the necessity of monitoring attribute data and correlated quality characteristics are considered. To this end, multivariate control charts from an industrial context are adapted to monitor radiation delivered to patients undergoing diagnostic coronary angiogram and various risk-adjusted control charts are constructed and investigated in monitoring binary outcomes of clinical interventions as well as postintervention survival time. Meanwhile, adoption of a Bayesian approach is proposed as a new framework in estimation of change point following control chart’s signal. This estimate aims to facilitate root causes efforts in quality improvement cycle since it cuts the search for the potential causes of detected changes to a tighter time-frame prior to the signal. This approach enables us to obtain highly informative estimates for change point parameters since probability distribution based results are obtained. Using Bayesian hierarchical models and Markov chain Monte Carlo computational methods, Bayesian estimators of the time and the magnitude of various change scenarios including step change, linear trend and multiple change in a Poisson process are developed and investigated. The benefits of change point investigation is revisited and promoted in monitoring hospital outcomes where the developed Bayesian estimator reports the true time of the shifts, compared to priori known causes, detected by control charts in monitoring rate of excess usage of blood products and major adverse events during and after cardiac surgery in a local hospital. The development of the Bayesian change point estimators are then followed in a healthcare surveillances for processes in which pre-intervention characteristics of patients are viii affecting the outcomes. In this setting, at first, the Bayesian estimator is extended to capture the patient mix, covariates, through risk models underlying risk-adjusted control charts. Variations of the estimator are developed to estimate the true time of step changes and linear trends in odds ratio of intensive care unit outcomes in a local hospital. Secondly, the Bayesian estimator is extended to identify the time of a shift in mean survival time after a clinical intervention which is being monitored by riskadjusted survival time control charts. In this context, the survival time after a clinical intervention is also affected by patient mix and the survival function is constructed using survival prediction model. The simulation study undertaken in each research component and obtained results highly recommend the developed Bayesian estimators as a strong alternative in change point estimation within quality improvement cycle in healthcare surveillances as well as industrial and business contexts. The superiority of the proposed Bayesian framework and estimators are enhanced when probability quantification, flexibility and generalizability of the developed model are also considered. The empirical results and simulations indicate that the Bayesian estimators are a strong alternative in change point estimation within quality improvement cycle in healthcare surveillances. The superiority of the proposed Bayesian framework and estimators are enhanced when probability quantification, flexibility and generalizability of the developed model are also considered. The advantages of the Bayesian approach seen in general context of quality control may also be extended in the industrial and business domains where quality monitoring was initially developed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper addresses development of an ingenious decision support system (iDSS) based on the methodology of survey instruments and identification of significant variables to be used in iDSS using statistical analysis. A survey was undertaken with pregnant women and factorial experimental design was chosen to acquire sample size. Variables with good reliability in any one of the statistical techniques such as Chi-square, Cronbach’s α and Classification Tree were incorporated in the iDSS. The ingenious decision support system was implemented with Visual Basic as front end and Microsoft SQL server management as backend. Outcome of the ingenious decision support system include advice on Symptoms, Diet and Exercise to pregnant women.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We consider how data from scientific research should be used for decision making in health services. Whether a hand hygiene intervention to reduce risk of nosocomial infection should be widely adopted is the case study. Improving hand hygiene has been described as the most important measure to prevent nosocomial infection. 1 Transmission of microorganisms is reduced, and fewer infections arise, which leads to a reduction in mortality2 and cost savings.3 Implementing a hand hygiene program is itself costly, so the extra investment should be tested for cost-effectiveness.4,5 The first part of our commentary is about cost-effectiveness models and how they inform decision making for health services. The second part is about how data on the effectiveness of hand hygiene programs arising from scientific studies are used, and 2 points are made: the threshold for statistical inference of .05 used to judge effectiveness studies is not important for decision making,6,7 and potentially valuable evidence about effectiveness might be excluded by decision makers because it is deemed low quality.8 The ideas put forward will help researchers and health services decision makers to appraise scientific evidence in a more powerful way.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Matched case–control research designs can be useful because matching can increase power due to reduced variability between subjects. However, inappropriate statistical analysis of matched data could result in a change in the strength of association between the dependent and independent variables or a change in the significance of the findings. We sought to ascertain whether matched case–control studies published in the nursing literature utilized appropriate statistical analyses. Of 41 articles identified that met the inclusion criteria, 31 (76%) used an inappropriate statistical test for comparing data derived from case subjects and their matched controls. In response to this finding, we developed an algorithm to support decision-making regarding statistical tests for matched case–control studies.