153 resultados para State space modelling

em Queensland University of Technology - ePrints Archive


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This design research concerns the generation of spaces that fully respond to people’s presence and their activities and spatialises the dynamics of a full body massage. Researched though digital and physical modelling full size physical form was constructed using Ethylene Vinyl Acetate (EVA) foam with three-dimensional shape defined by a computer generated cutting pattern, and assembled into a non-linear articulated surface.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Estimating and predicting degradation processes of engineering assets is crucial for reducing the cost and insuring the productivity of enterprises. Assisted by modern condition monitoring (CM) technologies, most asset degradation processes can be revealed by various degradation indicators extracted from CM data. Maintenance strategies developed using these degradation indicators (i.e. condition-based maintenance) are more cost-effective, because unnecessary maintenance activities are avoided when an asset is still in a decent health state. A practical difficulty in condition-based maintenance (CBM) is that degradation indicators extracted from CM data can only partially reveal asset health states in most situations. Underestimating this uncertainty in relationships between degradation indicators and health states can cause excessive false alarms or failures without pre-alarms. The state space model provides an efficient approach to describe a degradation process using these indicators that can only partially reveal health states. However, existing state space models that describe asset degradation processes largely depend on assumptions such as, discrete time, discrete state, linearity, and Gaussianity. The discrete time assumption requires that failures and inspections only happen at fixed intervals. The discrete state assumption entails discretising continuous degradation indicators, which requires expert knowledge and often introduces additional errors. The linear and Gaussian assumptions are not consistent with nonlinear and irreversible degradation processes in most engineering assets. This research proposes a Gamma-based state space model that does not have discrete time, discrete state, linear and Gaussian assumptions to model partially observable degradation processes. Monte Carlo-based algorithms are developed to estimate model parameters and asset remaining useful lives. In addition, this research also develops a continuous state partially observable semi-Markov decision process (POSMDP) to model a degradation process that follows the Gamma-based state space model and is under various maintenance strategies. Optimal maintenance strategies are obtained by solving the POSMDP. Simulation studies through the MATLAB are performed; case studies using the data from an accelerated life test of a gearbox and a liquefied natural gas industry are also conducted. The results show that the proposed Monte Carlo-based EM algorithm can estimate model parameters accurately. The results also show that the proposed Gamma-based state space model have better fitness result than linear and Gaussian state space models when used to process monotonically increasing degradation data in the accelerated life test of a gear box. Furthermore, both simulation studies and case studies show that the prediction algorithm based on the Gamma-based state space model can identify the mean value and confidence interval of asset remaining useful lives accurately. In addition, the simulation study shows that the proposed maintenance strategy optimisation method based on the POSMDP is more flexible than that assumes a predetermined strategy structure and uses the renewal theory. Moreover, the simulation study also shows that the proposed maintenance optimisation method can obtain more cost-effective strategies than a recently published maintenance strategy optimisation method by optimising the next maintenance activity and the waiting time till the next maintenance activity simultaneously.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

PySSM is a Python package that has been developed for the analysis of time series using linear Gaussian state space models (SSM). PySSM is easy to use; models can be set up quickly and efficiently and a variety of different settings are available to the user. It also takes advantage of scientific libraries Numpy and Scipy and other high level features of the Python language. PySSM is also used as a platform for interfacing between optimised and parallelised Fortran routines. These Fortran routines heavily utilise Basic Linear Algebra (BLAS) and Linear Algebra Package (LAPACK) functions for maximum performance. PySSM contains classes for filtering, classical smoothing as well as simulation smoothing.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This article deals with time-domain hydroelastic analysis of a marine structure. The convolution terms associated with fluid memory effects are replaced by an alternative state-space representation, the parameters of which are obtained by using realization theory. The mathematical model established is validated by comparison to experimental results of a very flexible barge. Two types of time-domain simulations are performed: dynamic response of the initially inert structure to incident regular waves and transient response of the structure after it is released from a displaced condition in still water. The accuracy and the efficiency of the simulations based on the state-space model representations are compared to those that integrate the convolutions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Biochemical reactions underlying genetic regulation are often modelled as a continuous-time, discrete-state, Markov process, and the evolution of the associated probability density is described by the so-called chemical master equation (CME). However the CME is typically difficult to solve, since the state-space involved can be very large or even countably infinite. Recently a finite state projection method (FSP) that truncates the state-space was suggested and shown to be effective in an example of a model of the Pap-pili epigenetic switch. However in this example, both the model and the final time at which the solution was computed, were relatively small. Presented here is a Krylov FSP algorithm based on a combination of state-space truncation and inexact matrix-vector product routines. This allows larger-scale models to be studied and solutions for larger final times to be computed in a realistic execution time. Additionally the new method computes the solution at intermediate times at virtually no extra cost, since it is derived from Krylov-type methods for computing matrix exponentials. For the purpose of comparison the new algorithm is applied to the model of the Pap-pili epigenetic switch, where the original FSP was first demonstrated. Also the method is applied to a more sophisticated model of regulated transcription. Numerical results indicate that the new approach is significantly faster and extendable to larger biological models.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Stochastic models for competing clonotypes of T cells by multivariate, continuous-time, discrete state, Markov processes have been proposed in the literature by Stirk, Molina-París and van den Berg (2008). A stochastic modelling framework is important because of rare events associated with small populations of some critical cell types. Usually, computational methods for these problems employ a trajectory-based approach, based on Monte Carlo simulation. This is partly because the complementary, probability density function (PDF) approaches can be expensive but here we describe some efficient PDF approaches by directly solving the governing equations, known as the Master Equation. These computations are made very efficient through an approximation of the state space by the Finite State Projection and through the use of Krylov subspace methods when evolving the matrix exponential. These computational methods allow us to explore the evolution of the PDFs associated with these stochastic models, and bimodal distributions arise in some parameter regimes. Time-dependent propensities naturally arise in immunological processes due to, for example, age-dependent effects. Incorporating time-dependent propensities into the framework of the Master Equation significantly complicates the corresponding computational methods but here we describe an efficient approach via Magnus formulas. Although this contribution focuses on the example of competing clonotypes, the general principles are relevant to multivariate Markov processes and provide fundamental techniques for computational immunology.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

To obtain minimum time or minimum energy trajectories for robots it is necessary to employ planning methods which adequately consider the platform’s dynamic properties. A variety of sampling, graph-based or local receding-horizon optimisation methods have previously been proposed. These typically use simplified kino-dynamic models to avoid the significant computational burden of solving this problem in a high dimensional state-space. In this paper we investigate solutions from the class of pseudospectral optimisation methods which have grown in favour amongst the optimal control community in recent years. These methods have high computational efficiency and rapid convergence properties. We present a practical application of such an approach to the robot path planning problem to provide a trajectory considering the robot’s dynamic properties. We extend the existing literature by augmenting the path constraints with sensed obstacles rather than predefined analytical functions to enable real world application.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

As business process management technology matures, organisations acquire more and more business process models. The resulting collections can consist of hundreds, even thousands of models and their management poses real challenges. One of these challenges concerns model retrieval where support should be provided for the formulation and efficient execution of business process model queries. As queries based on only structural information cannot deal with all querying requirements in practice, there should be support for queries that require knowledge of process model semantics. In this paper we formally define a process model query language that is based on semantic relationships between tasks. This query language is independent of the particular process modelling notation used, but we will demonstrate how it can be used in the context of Petri nets by showing how the semantic relationships can be determined for these nets in such a way that state space explosion is avoided as much as possible. An experiment with three large process model repositories shows that queries expressed in our language can be evaluated efficiently.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Handling information overload online, from the user's point of view is a big challenge, especially when the number of websites is growing rapidly due to growth in e-commerce and other related activities. Personalization based on user needs is the key to solving the problem of information overload. Personalization methods help in identifying relevant information, which may be liked by a user. User profile and object profile are the important elements of a personalization system. When creating user and object profiles, most of the existing methods adopt two-dimensional similarity methods based on vector or matrix models in order to find inter-user and inter-object similarity. Moreover, for recommending similar objects to users, personalization systems use the users-users, items-items and users-items similarity measures. In most cases similarity measures such as Euclidian, Manhattan, cosine and many others based on vector or matrix methods are used to find the similarities. Web logs are high-dimensional datasets, consisting of multiple users, multiple searches with many attributes to each. Two-dimensional data analysis methods may often overlook latent relationships that may exist between users and items. In contrast to other studies, this thesis utilises tensors, the high-dimensional data models, to build user and object profiles and to find the inter-relationships between users-users and users-items. To create an improved personalized Web system, this thesis proposes to build three types of profiles: individual user, group users and object profiles utilising decomposition factors of tensor data models. A hybrid recommendation approach utilising group profiles (forming the basis of a collaborative filtering method) and object profiles (forming the basis of a content-based method) in conjunction with individual user profiles (forming the basis of a model based approach) is proposed for making effective recommendations. A tensor-based clustering method is proposed that utilises the outcomes of popular tensor decomposition techniques such as PARAFAC, Tucker and HOSVD to group similar instances. An individual user profile, showing the user's highest interest, is represented by the top dimension values, extracted from the component matrix obtained after tensor decomposition. A group profile, showing similar users and their highest interest, is built by clustering similar users based on tensor decomposed values. A group profile is represented by the top association rules (containing various unique object combinations) that are derived from the searches made by the users of the cluster. An object profile is created to represent similar objects clustered on the basis of their similarity of features. Depending on the category of a user (known, anonymous or frequent visitor to the website), any of the profiles or their combinations is used for making personalized recommendations. A ranking algorithm is also proposed that utilizes the personalized information to order and rank the recommendations. The proposed methodology is evaluated on data collected from a real life car website. Empirical analysis confirms the effectiveness of recommendations made by the proposed approach over other collaborative filtering and content-based recommendation approaches based on two-dimensional data analysis methods.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

To provide privacy protection, cryptographic primitives are frequently applied to communication protocols in an open environment (e.g. the Internet). We call these protocols privacy enhancing protocols (PEPs) which constitute a class of cryptographic protocols. Proof of the security properties, in terms of the privacy compliance, of PEPs is desirable before they can be deployed. However, the traditional provable security approach, though well-established for proving the security of cryptographic primitives, is not applicable to PEPs. We apply the formal language of Coloured Petri Nets (CPNs) to construct an executable specification of a representative PEP, namely the Private Information Escrow Bound to Multiple Conditions Protocol (PIEMCP). Formal semantics of the CPN specification allow us to reason about various privacy properties of PIEMCP using state space analysis techniques. This investigation provides insights into the modelling and analysis of PEPs in general, and demonstrates the benefit of applying a CPN-based formal approach to the privacy compliance verification of PEPs.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Reducing complexity in Information Systems is a main concern in both research and industry. One strategy for reducing complexity is separation of concerns. This strategy advocates separating various concerns, like security and privacy, from the main concern. It results in less complex, easily maintainable, and more reusable Information Systems. Separation of concerns is addressed through the Aspect Oriented paradigm. This paradigm has been well researched and implemented in programming, where languages such as AspectJ have been developed. However, the rsearch on aspect orientation for Business Process Management is still at its beginning. While some efforts have been made proposing Aspect Oriented Business Process Modelling, it has not yet been investigated how to enact such process models in a Workflow Management System. In this paper, we define a set of requirements that specifies the execution of aspect oriented business process models. We create a Coloured Petri Net specification for the semantics of so-called Aspect Service that fulfils these requirements. Such a service extends the capability of a Workflow Management System with support for execution of aspect oriented business process models. The design specification of the Aspect Service is also inspected through state space analysis.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Trivium is a keystream generator for a binary additive synchronous stream cipher. It was selected in the final portfolio for the Profile 2 category of the eSTREAM project. The keystream generator is constructed using bit- based shift registers. In this paper we present an alternate representation of Trivium using word-based shift registers, with a word size of three bits. This representation is useful for determining cycles of internal state values. Under this representation it is clear that the state space can be partitioned into subspaces and that over some of these subspaces the state update function is effectively linear. The role of the initialization process is critical in ensuring the states used for generating keystream are updated nonlinearly at some point, as the state update function alone does not provide this.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Distributed Network Protocol Version 3 (DNP3) is the de-facto communication protocol for power grids. Standard-based interoperability among devices has made the protocol useful to other infrastructures such as water, sewage, oil and gas. DNP3 is designed to facilitate interaction between master stations and outstations. In this paper, we apply a formal modelling methodology called Coloured Petri Nets (CPN) to create an executable model representation of DNP3 protocol. The model facilitates the analysis of the protocol to ensure that the protocol will behave as expected. Also, we illustrate how to verify and validate the behaviour of the protocol, using the CPN model and the corresponding state space tool to determine if there are insecure states. With this approach, we were able to identify a Denial of Service (DoS) attack against the DNP3 protocol.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A better understanding of the behaviour of prepared cane and bagasse, and the ability to model the mechanical behaviour of bagasse as it is squeezed in a milling unit to extract juice, would help identify how to improve the current process, for example to reduce final bagasse moisture. Previous investigations have proven that juice flow through bagasse obeys Darcy’s permeability law, that the grip of the rough surface of the grooves on the bagasse can be represented by the Mohr-Coulomb failure criterion for soils, and that the internal mechanical behaviour of the bagasse is critical state behaviour similar to that for sand and clay. Current Finite Element Models (FEM) available in commercial software have adequate permeability models. However, no commercially available software seems to contain an adequate mechanical model for bagasse. The same software contains a few material models for soil and other materials, while the coding of hundreds of developed models for soil and other materials remains confidential at universities and government research centres. Progress has been made in the last ten years towards implementing a mechanical model for bagasse in finite element software code. This paper builds on that progress and carries out a further step towards obtaining an adequate material model. The fifth and final loading condition outlined previously, shearing of heavily over-consolidated bagasse, is outlined.