291 resultados para Stars: emission-line
em Queensland University of Technology - ePrints Archive
Resumo:
A composite line source emission (CLSE) model was developed to specifically quantify exposure levels and describe the spatial variability of vehicle emissions in traffic interrupted microenvironments. This model took into account the complexity of vehicle movements in the queue, as well as different emission rates relevant to various driving conditions (cruise, decelerate, idle and accelerate), and it utilised multi-representative segments to capture the accurate emission distribution for real vehicle flow. Hence, this model was able to quickly quantify the time spent in each segment within the considered zone, as well as the composition and position of the requisite segments based on the vehicle fleet information, which not only helped to quantify the enhanced emissions at critical locations, but it also helped to define the emission source distribution of the disrupted steady flow for further dispersion modelling. The model then was applied to estimate particle number emissions at a bi-directional bus station used by diesel and compressed natural gas fuelled buses. It was found that the acceleration distance was of critical importance when estimating particle number emission, since the highest emissions occurred in sections where most of the buses were accelerating and no significant increases were observed at locations where they idled. It was also shown that emissions at the front end of the platform were 43 times greater than at the rear of the platform. Although the CLSE model is intended to be applied in traffic management and transport analysis systems for the evaluation of exposure, as well as the simulation of vehicle emissions in traffic interrupted microenvironments, the bus station model can also be used for the input of initial source definitions in future dispersion models.
Resumo:
Vehicle emitted particles are of significant concern based on their potential to influence local air quality and human health. Transport microenvironments usually contain higher vehicle emission concentrations compared to other environments, and people spend a substantial amount of time in these microenvironments when commuting. Currently there is limited scientific knowledge on particle concentration, passenger exposure and the distribution of vehicle emissions in transport microenvironments, partially due to the fact that the instrumentation required to conduct such measurements is not available in many research centres. Information on passenger waiting time and location in such microenvironments has also not been investigated, which makes it difficult to evaluate a passenger’s spatial-temporal exposure to vehicle emissions. Furthermore, current emission models are incapable of rapidly predicting emission distribution, given the complexity of variations in emission rates that result from changes in driving conditions, as well as the time spent in driving condition within the transport microenvironment. In order to address these scientific gaps in knowledge, this work conducted, for the first time, a comprehensive statistical analysis of experimental data, along with multi-parameter assessment, exposure evaluation and comparison, and emission model development and application, in relation to traffic interrupted transport microenvironments. The work aimed to quantify and characterise particle emissions and human exposure in the transport microenvironments, with bus stations and a pedestrian crossing identified as suitable research locations representing a typical transport microenvironment. Firstly, two bus stations in Brisbane, Australia, with different designs, were selected to conduct measurements of particle number size distributions, particle number and PM2.5 concentrations during two different seasons. Simultaneous traffic and meteorological parameters were also monitored, aiming to quantify particle characteristics and investigate the impact of bus flow rate, station design and meteorological conditions on particle characteristics at stations. The results showed higher concentrations of PN20-30 at the station situated in an open area (open station), which is likely to be attributed to the lower average daily temperature compared to the station with a canyon structure (canyon station). During precipitation events, it was found that particle number concentration in the size range 25-250 nm decreased greatly, and that the average daily reduction in PM2.5 concentration on rainy days compared to fine days was 44.2 % and 22.6 % at the open and canyon station, respectively. The effect of ambient wind speeds on particle number concentrations was also examined, and no relationship was found between particle number concentration and wind speed for the entire measurement period. In addition, 33 pairs of average half-hourly PN7-3000 concentrations were calculated and identified at the two stations, during the same time of a day, and with the same ambient wind speeds and precipitation conditions. The results of a paired t-test showed that the average half-hourly PN7-3000 concentrations at the two stations were not significantly different at the 5% confidence level (t = 0.06, p = 0.96), which indicates that the different station designs were not a crucial factor for influencing PN7-3000 concentrations. A further assessment of passenger exposure to bus emissions on a platform was evaluated at another bus station in Brisbane, Australia. The sampling was conducted over seven weekdays to investigate spatial-temporal variations in size-fractionated particle number and PM2.5 concentrations, as well as human exposure on the platform. For the whole day, the average PN13-800 concentration was 1.3 x 104 and 1.0 x 104 particle/cm3 at the centre and end of the platform, respectively, of which PN50-100 accounted for the largest proportion to the total count. Furthermore, the contribution of exposure at the bus station to the overall daily exposure was assessed using two assumed scenarios of a school student and an office worker. It was found that, although the daily time fraction (the percentage of time spend at a location in a whole day) at the station was only 0.8 %, the daily exposure fractions (the percentage of exposures at a location accounting for the daily exposure) at the station were 2.7% and 2.8 % for exposure to PN13-800 and 2.7% and 3.5% for exposure to PM2.5 for the school student and the office worker, respectively. A new parameter, “exposure intensity” (the ratio of daily exposure fraction and the daily time fraction) was also defined and calculated at the station, with values of 3.3 and 3.4 for exposure to PN13-880, and 3.3 and 4.2 for exposure to PM2.5, for the school student and the office worker, respectively. In order to quantify the enhanced emissions at critical locations and define the emission distribution in further dispersion models for traffic interrupted transport microenvironments, a composite line source emission (CLSE) model was developed to specifically quantify exposure levels and describe the spatial variability of vehicle emissions in traffic interrupted microenvironments. This model took into account the complexity of vehicle movements in the queue, as well as different emission rates relevant to various driving conditions (cruise, decelerate, idle and accelerate), and it utilised multi-representative segments to capture the accurate emission distribution for real vehicle flow. This model does not only helped to quantify the enhanced emissions at critical locations, but it also helped to define the emission source distribution of the disrupted steady flow for further dispersion modelling. The model then was applied to estimate particle number emissions at a bidirectional bus station used by diesel and compressed natural gas fuelled buses. It was found that the acceleration distance was of critical importance when estimating particle number emission, since the highest emissions occurred in sections where most of the buses were accelerating and no significant increases were observed at locations where they idled. It was also shown that emissions at the front end of the platform were 43 times greater than at the rear of the platform. The CLSE model was also applied at a signalled pedestrian crossing, in order to assess increased particle number emissions from motor vehicles when forced to stop and accelerate from rest. The CLSE model was used to calculate the total emissions produced by a specific number and mix of light petrol cars and diesel passenger buses including 1 car travelling in 1 direction (/1 direction), 14 cars / 1 direction, 1 bus / 1 direction, 28 cars / 2 directions, 24 cars and 2 buses / 2 directions, and 20 cars and 4 buses / 2 directions. It was found that the total emissions produced during stopping on a red signal were significantly higher than when the traffic moved at a steady speed. Overall, total emissions due to the interruption of the traffic increased by a factor of 13, 11, 45, 11, 41, and 43 for the above 6 cases, respectively. In summary, this PhD thesis presents the results of a comprehensive study on particle number and mass concentration, together with particle size distribution, in a bus station transport microenvironment, influenced by bus flow rates, meteorological conditions and station design. Passenger spatial-temporal exposure to bus emitted particles was also assessed according to waiting time and location along the platform, as well as the contribution of exposure at the bus station to overall daily exposure. Due to the complexity of the interrupted traffic flow within the transport microenvironments, a unique CLSE model was also developed, which is capable of quantifying emission levels at critical locations within the transport microenvironment, for the purpose of evaluating passenger exposure and conducting simulations of vehicle emission dispersion. The application of the CLSE model at a pedestrian crossing also proved its applicability and simplicity for use in a real-world transport microenvironment.
Resumo:
Positive and negative small ions, aerosol ion and number concentration and dc electric fields were monitored at an overhead high-voltage power line site. We show that the emission of corona ions was not spatially uniform along the lines and occurred from discrete components such as a particular set of spacers. Maximum ion concentrations and atmospheric dc electric fields were observed at a point 20 m downwind of the lines. It was estimated that less than 7% of the total number of aerosol particles was charged. The electrical parameters decreased steadily with further downwind distance but remained significantly higher than background.
Resumo:
A technique for analysing exhaust emission plumes from unmodified locomotives under real world conditions is described and applied to the task of characterizing plumes from railway trains servicing an Australian shipping port. The method utilizes the simultaneous measurement, downwind of the railway line, of the following pollutants; particle number, PM2.5 mass fraction, SO2, NOx and CO2, with the last of these being used as an indicator of fuel combustion. Emission factors are then derived, in terms of number of particles and mass of pollutant emitted per unit mass of fuel consumed. Particle number size distributions are also presented. The practical advantages of the method are discussed including the capacity to routinely collect emission factor data for passing trains and to thereby build up a comprehensive real world database for a wide range of pollutants. Samples from 56 train movements were collected, analyzed and presented. The quantitative results for emission factors are: EF(N)=(1.7±1)×1016 kg-1, EF(PM2.5)= (1.1±0.5) g·kg-1, EF(NOx)= (28±14) g·kg-1, and EF(SO2 )= (1.4±0.4) g·kg-1. The findings are compared with comparable previously published work. Statistically significant (p<α, α=0.05) correlations within the group of locomotives sampled were found between the emission factors for particle number and both SO2 and NOx.
Resumo:
Numerous initiatives have been employed around the world in order to address rising greenhouse gas (GHG) emissions originating from the transport sector. These measures include: travel demand management (congestion‐charging), increased fuel taxes, alternative fuel subsidies and low‐emission vehicle (LEV) rebates. Incentivizing the purchase of LEVs has been one of the more prevalent approaches in attempting to tackle this global issue. LEVs, whilst having the advantage of lower emissions and, in some cases, more efficient fuel consumption, also bring the downsides of increased purchase cost, reduced convenience of vehicle fuelling, and operational uncertainty. To stimulate demand in the face of these challenges, various incentive‐based policies, such as toll exemptions, have been used by national and local governments to encourage the purchase of these types of vehicles. In order to address rising GHG emissions in Stockholm, and in line with the Swedish Government’s ambition to operate a fossil free fleet by 2030, a number of policies were implemented targeting the transport sector. Foremost amongst these was the combination of a congestion charge – initiated to discourage emissions‐intensive travel – and an exemption from this charge for some LEVs, established to encourage a transition towards a ‘green’ vehicle fleet. Although both policies shared the aim of reducing GHG emissions, the exemption for LEVs carried the risk of diminishing the effectiveness of the congestion charging scheme. As the number of vehicle owners choosing to transition to an eligible LEV increased, the congestion‐reduction effectiveness of the charging scheme weakened. In fact, policy makers quickly recognized this potential issue and consequently phased out the LEV exemption less than 18 months after its introduction (1). Several studies have investigated the demand for LEVs through stated‐preference (SP) surveys across multiple countries, including: Denmark (2), Germany (3, 4), UK (5), Canada (6), USA (7, 8) and Australia (9). Although each of these studies differed in approach, all involved SP surveys where differing characteristics between various types of vehicles, including LEVs, were presented to respondents and these respondents in turn made hypothetical decisions about which vehicle they would be most likely to purchase. Although these studies revealed a number of interesting findings in regards to the potential demand for LEVs, they relied on SP data. In contrast, this paper employs an approach where LEV choice is modelled by taking a retrospective view and by using revealed preference (RP) data. By examining the revealed preferences of vehicle owners in Stockholm, this study overcomes one of the principal limitations of SP data, namely that stated preferences may not in fact reflect individuals’ actual choices, such as when cost, time, and inconvenience factors are real rather than hypothetical. This paper’s RP approach involves modelling the characteristics of individuals who purchased new LEVs, whilst estimating the effect of the congestion charging exemption upon choice probabilities and subsequent aggregate demand. The paper contributes to the current literature by examining the effectiveness of a toll exemption under revealed preference conditions, and by assessing the total effect of the policy based on key indicators for policy makers, including: vehicle owner home location, commuting patterns, number of children, age, gender and income. Extended Abstract Submission for Kuhmo Nectar Conference 2014 2 The two main research questions motivating this study were: Which individuals chose to purchase a new LEV in Stockholm in 2008?; and, How did the congestion charging exemption affect the aggregate demand for new LEVs in Stockholm in 2008? In order to answer these research questions the analysis was split into two stages. Firstly, a multinomial logit (MNL) model was used to identify which demographic characteristics were most significantly related to the purchase of an LEV over a conventional vehicle. The three most significant variables were found to be: intra‐cordon residency (positive); commuting across the cordon (positive); and distance of residence from the cordon (negative). In order to estimate the effect of the exemption policy on vehicle purchase choice, the model included variables to control for geographic differences in preferences, based on the location of the vehicle owners’ homes and workplaces in relation to the congestion‐charging cordon boundary. These variables included one indicator representing commutes across the cordon and another indicator representing intra‐cordon residency. The effect of the exemption policy on the probability of purchasing LEVs was estimated in the second stage of the analysis by focusing on the groups of vehicle owners that were most likely to have been affected by the policy i.e. those commuting across the cordon boundary (in both directions). Given the inclusion of the indicator variable representing commutes across the cordon, it is assumed that the estimated coefficient of this variable captures the effect of the exemption policy on the utility of choosing to purchase an exempt LEV for these two groups of vehicle owners. The intra‐cordon residency indicator variable also controls for differences between the two groups, based upon direction of travel across the cordon boundary. A counter‐hypothesis to this assumption is that the coefficient of the variable representing commuting across the cordon boundary instead only captures geo‐demographic differences that lead to variations in LEV ownership across the different groups of vehicle owners in relation to the cordon boundary. In order to address this counter‐hypothesis, an additional analysis was performed on data from a city with a similar geodemographic pattern to Stockholm, Gothenburg ‐ Sweden’s second largest city. The results of this analysis provided evidence to support the argument that the coefficient of the variable representing commutes across the cordon was capturing the effect of the exemption policy. Based upon this framework, the predicted vehicle type shares were calculated using the estimated coefficients of the MNL model and compared with predicted vehicle type shares from a simulated scenario where the exemption policy was inactive. This simulated scenario was constructed by setting the coefficient for the variable representing commutes across the cordon boundary to zero for all observations to remove the utility benefit of the exemption policy. Overall, the procedure of this second stage of the analysis led to results showing that the exemption had a substantial effect upon the probability of purchasing and aggregate demand for exempt LEVs in Stockholm during 2008. By making use of unique evidence of revealed preferences of LEV owners, this study identifies the common characteristics of new LEV owners and estimates the effect of Stockholm's congestion charging exemption upon the demand for new LEVs during 2008. It was found that the variables that had the greatest effect upon the choice of purchasing an exempt LEV included intra‐cordon residency (positive), distance of home from the cordon (negative), and commuting across the cordon (positive). It was also determined that owners under the age of 30 years preferred non‐exempt LEVs (low CO2 LEVs), whilst those over the age of 30 years preferred electric vehicles. In terms of electric vehicles, it was apparent that those individuals living within the city had the highest propensity towards purchasing this vehicle type. A negative relationship between choosing an electric vehicle and the distance of an individuals’ residency from the cordon was also evident. Overall, the congestion charging exemption was found to have increased the share of exempt LEVs in Stockholm by 1.9%, with, as expected, a much stronger effect on those commuting across the boundary, with those living inside the cordon having a 13.1% increase, and those owners living outside the cordon having a 5.0% increase. This increase in demand corresponded to an additional 538 (+/‐ 93; 95% C.I.) new exempt LEVs purchased in Stockholm during 2008 (out of a total of 5 427; 9.9%). Policy makers can take note that an incentive‐based policy can increase the demand for LEVs and appears to be an appropriate approach to adopt when attempting to reduce transport emissions through encouraging a transition towards a ‘green’ vehicle fleet.
Resumo:
Corona discharge is responsible for the small ions found near overhead power lines, and these are capable of modifying the ambient electrical environment such as the dc electric field at ground level (Fews, Wilding et al. 2002). Once produced, small ions quickly attach to aerosol particles in the air, producing ‘large ions’ which are roughly 1 nm to 1 µm in diameter. However, very few studies have reported measurements of ions produced by power lines and its impact on particle charge concentrations. In this present study, the measurements were conducted as a function of normal downwind distance from a 275kV power line for investigating the effect of corona ions on air ions, aerosol particle charge concentration and dc e-filed.
Resumo:
High voltage powerlines may give rise to corona breakdown, resulting in the release of large concentrations of charged ions into the surrounding environment. These ions quickly attach to aerosols and the resulting charged particles are carried by prevalent winds. This paper describes a study carried out at a site near an overhead double circuit ac transmission voltage powerline to investigate factors that control the rate at which charged particles are produced, and to determine the total particle number concentrations, total particle charge concentrations and vertical dc electric fields in the proximity of the line. Measured mean values of these three parameters at a perpendicular distance of 50m from the line were 1.8 x 103 particle cm-3, 518 ions cm3 and 520 V m-1 respectively. The net electric charge was positive and the electric field was directed downwards. These parameters were correlated with each other and monitored at four different distances from the line. Effects of meteorological parameters such as wind speed and wind direction were also investigated.
Resumo:
Anthropogenic elemental mercury (Hg0) emission is a serious worldwide environmental problem due to the extreme toxicity of the heavy metal to humans, plants and wildlife. Development of an accurate and cheap microsensor based online monitoring system which can be integrated as part of Hg0 removal and control processes in industry is still a major challenge. Here, we demonstrate that forming Au nanospike structures directly onto the electrodes of a quartz crystal microbalance (QCM) using a novel electrochemical route results in a self-regenerating, highly robust, stable, sensitive and selective Hg0 vapor sensor. The data from a 127 day continuous test performed in the presence of volatile organic compounds and high humidity levels, showed that the sensor with an electrodeposted sensitive layer had 260% higher response magnitude, 3.4 times lower detection limit (,22 mg/m3 or ,2.46 ppbv) and higher accuracy (98% Vs 35%) over a Au control based QCM (unmodified) when exposed to a Hg0 vapor concentration of 10.55 mg/m3 at 1016C. Statistical analysis of the long term data showed that the nano-engineered Hg0 sorption sites on the developed Au nanospikes sensitive layer play a critical role in the enhanced sensitivity and selectivity of the developed sensor towards Hg0 vapor.
Resumo:
Regional cerebral blood flow (rCBF) and blood oxygenation level-dependent (BOLD) contrasts represent different physiological measures of brain activation. The present study aimed to compare two functional brain imaging techniques (functional magnetic resonance imaging versus [15O] positron emission tomography) when using Tower of London (TOL) problems as the activation task. A categorical analysis (task versus baseline) revealed a significant BOLD increase bilaterally for the dorsolateral prefrontal and inferior parietal cortex and for the cerebellum. A parametric haemodynamic response model (or regression analysis) confirmed a task-difficulty-dependent increase of BOLD and rCBF for the cerebellum and the left dorsolateral prefrontal cortex. In line with previous studies, a task-difficulty-dependent increase of left-hemispheric rCBF was also detected for the premotor cortex, cingulate, precuneus, and globus pallidus. These results imply consistency across the two neuroimaging modalities, particularly for the assessment of prefrontal brain function when using a parametric TOL adaptation.
Resumo:
Effective fuel injector operation and efficient combustion are two of the most critical aspects when Diesel engine performance, efficiency and reliability are considered. Indeed, it is widely acknowledged that fuel injection equipment faults lead to increased fuel consumption, reduced power, greater levels of exhaust emissions and even unexpected engine failure. Previous investigations have identified fuel injector related acoustic emission activity as being caused by mechanisms such as fuel line pressure build-up; fuel flow through injector nozzles, injector needle opening and closing impacts and premixed combustion related pulses. Few of these investigations however, have attempted to categorise the close association and interrelation that exists between fuel injection equipment function and the acoustic emission generating mechanisms. Consequently, a significant amount of ambiguity remains in the interpretation and categorisation of injector related AE activity with respect to the functional characteristics of specific fuel injection equipment. The investigation presented addresses this ambiguity by detailing a study in which AE signals were recorded and analysed from two different Diesel engines employing the two commonly encountered yet fundamentally different types of fuel injection equipment. Results from tests in which faults were induced into fuel injector nozzles from both indirect-injection and direct-injection engines show that functional differences between the main types of fuel injection equipment results in acoustic emission activity which can be specifically related to the type of fuel injection equipment used.
Resumo:
Synthetic Fe—Mn alkoxide of glycerol samples are submitted to controlled heating conditions and examined by IR absorption spectroscopy. On the other hand, the same sample is studied by infrared emission spectroscopy (IRES), upon heating in situ from 100 to 600°C. The spectral techniques employed in this contribution, especially IRES, show that as a result of the thermal treatments ferromagnetic oxides (manganese ferrite) are formed between 350 and 400°C. Some further spectral changes are seen at higher temperatures.
Resumo:
Thermal transformations of natural calcium oxalate dihydrate known in mineralogy as weddellite have been undertaken using a combination of Raman microscopy and infrared emission spectroscopy. The vibrational spectroscopic data was complimented with high resolution thermogravimetric analysis combined with evolved gas mass spectrometry. TG–MS identified three mass loss steps at 114, 422 and 592 °C. In the first mass loss step water is evolved only, in the second and third steps carbon dioxide is evolved. The combination of Raman microscopy and a thermal stage clearly identifies the changes in the molecular structure with thermal treatment. Weddellite is the phase in the temperature range up to the pre-dehydration temperature of 97 °C. At this temperature, the phase formed is whewellite (calcium oxalate monohydrate) and above 114 °C the phase is the anhydrous calcium oxalate. Above 422 °C, calcium carbonate is formed. Infrared emission spectroscopy shows that this mineral decomposes at around 650 °C. Changes in the position and intensity of the C=O and C---C stretching vibrations in the Raman spectra indicate the temperature range at which these phase changes occur.