86 resultados para Stabilized-zirconia
em Queensland University of Technology - ePrints Archive
Resumo:
Laser deposition was used to deposit YBaCuO thin films on Yttria-stabilized Zirconia substrates, at substrate holder temperatures of 710-765 °C. We observed a transition from singlecrystalline to polycrystalline growth at a temperature of ∼750 °C. All films were highly c-axis oriented and had critical temperatures between 89.5 and 92 K. In the twinned singlecrystalline films, the lowest measured microwave surface resistance was 0.37 mΩ at 4.2 K and 21.5 GHz, and the highest critical current 5×106 A/cm2 at 77 K. The polycrystalline films had up to a factor of 50 higher surface resistance and a factor of 10 lower critical current. A meander line resonator made of a film on a LaAlO3 substrate, showed a microwave surface resistance of 5μΩ at 4.2 K and 2.5 GHz. © 1991.
Resumo:
Y Ba Cu oxide thin films were grown epitaxially on single cryst. yttria-stabilized zirconia substrates by laser deposition. [on SciFinder(R)]
Resumo:
Porous yttria-stabilized zirconia (YSZ) has been regarded as a potential candidate for bone substitute due to its high mechanical strength. However, porous YSZ is biologically inert to bone tissue. It is therefore necessary to introduce bioactive coatings onto the walls of the porous structures to enhance its bioactivity. In this study, porous YSZ scaffolds were prepared using a replication technique and then coated with mesoporous bioglass due to its excellent bioactivity. The microstructures were examined using scanning electron microscopy and the mechanical strength was evaluated via compression test. The biocompatibility and bioactivity were also evaluated using bone marrow stromal cell (BMSC) proliferation test and simulated body fluid test.
Resumo:
Porous yttria-stabilized zirconia (YSZ) has been regarded as a potential candidate for bone substitute as its high mechanical strength. However, porous YSZ bodies are biologically inert to bone tissue. It is therefore necessary to introduce bioactive coatings onto the walls of the porous structures to enhance the bioactivity. In this study, the porous zirconia scaffolds were prepared by infiltration of Acrylonitrile Butadiene Styrene (ABS) scaffolds with 3 mol% yttria stabilized zirconia slurry. After sintering, a method of sol-gel dip coating was involved to make coating layer of mesoporous bioglass (MBGs). The porous zirconia without the coating had high porosities of 60.1% to 63.8%, and most macropores were interconnected with pore sizes of 0.5-0.8mm. The porous zirconia had compressive strengths of 9.07-9.90MPa. Moreover, the average coating thickness was about 7μm. There is no significant change of compressive strength for the porous zirconia with mesoporous biogalss coating. The bone marrow stromal cell (BMSC) proliferation test showed both uncoated and coated zirconia scaffolds have good biocompatibility. The scanning electron microscope (SEM) micrographs and the compositional analysis graphs demonstrated that after testing in the simulated body fluid (SBF) for 7 days, the apatite formation occurred on the coating surface. Thus, porous zirconia-based ceramics were modified with bioactive coating of mesoporous bioglass for potential biomedical applications.
Resumo:
For the filling and reconstruction of non-healing bone defects, the application of porous ceramic scaffold as bone substitutes is considered to be a reasonable choice. In bone tissue engineering, an ideal scaffold must satisfy several criterias such as open porosity, having high compressive strength (it depends where in body, and if external fixatures are used) and the practicability for cell migration. Many researchers have focused on enhancing the mechanical properties of hydroxyapatite scaffolds by combining it with other biomaterials, such as bioglass and polymers. Nevertheless, there is still a lack of suitable scaffolds based on porous biomaterials. In this study, zirconia scaffolds from two different templates (polyurethane (PU) and Acrylonitrile Butadiene Styrene (ABS) templates) were successfully fabricated with dissimilar fabrication techniques. The scaffold surfaces were further modified with mesoporous bioglass for the purpose of bone tissue engineering. In the study of PU template scaffold, high porosity (~88%) sol-gel derived yttria-stabilized zirconia (YSZ) scaffold was prepared by a polyurethane (PU) foam replica method using sol-gel derived zirconia for the first time, and double coated with Mesoporous Bioglass (MBGs) coating. For the ABS template scaffold, two types of templates (cube and cylinder) with different strut spacings were used and fabricated by a 3D Rapid Prototyper. Subsequently, zirconia scaffolds with low porosity (63±2.8% to 68±2.5%) were fabricated by embedding the zirconia powder slurry into the ABS templates and burning out the ABS to produce a uniform porous structure. The zirconia scaffolds were double coated with mesoporous bioglass by dip coating for the first time. The porosities of the scaffolds were calculated before and after coating. The microstructures were then examined using scanning electron microscopy and the mechanical properties were evaluated using compressive test. Accordingly, relationships between microstructure, processing and mechanical behaviour of the porous zirconia was discussed. Scaffold biocompatibility and bioactivity was also evaluated using a bone marrow stromal cell (BMSC) proliferation test and a simulated body fluid test.
Resumo:
Transformation toughening ceramics (TTCs) are engineering materials which combine ceramic properties such as hardness, corrosion resistance and low thermal conductivity with good toughness and mechanical strength. At elevated temperatures their use is limited due to destabilisation of the transformation toughening microstructure (partially stabilised zirconia or PSZ) or creep and hydrothermal degradation (tetragonal zirconia polycrystals or TZPs). Despite these limitations, the use of TTCs, particularly zirconia based, has become widespread. To date, most commercial TTCs are based on combinations of zirconia and one stabilising oxide. This work investigates a zirconia ceramic containing two stabilisers, namely yttria and titania in roughly equal proportions.
Resumo:
Porous yttria-stabilized zirconia (YSZ) has been regarded as a potential candidate for bone substitute due to its high mechanical strength. However, porous YSZ is biologically inert to bone tissue. It is therefore necessary to introduce bioactive coatings onto the walls of the porous structures to enhance its bioactivity. In this study, porous YSZ scaffolds were prepared using a replication technique and then coated with mesoporous bioglass due to its excellent bioactivity. The microstructures were examined using scanning electron microscopy and the mechanical strength was evaluated via compression test. The biocompatibility and bioactivity were also evaluated using bone marrow stromal cell (BMSC) proliferation test and simulated body fluid test.
Resumo:
The microstructure of an artificial grain boundary in an YBa2Cu3O7-δ (YBCO) thin film grown on a (100)(110), [001]-tilt yttria-stabilized-zirconia (YSZ) bicrystal substrate has been studied using transmission electron microscopy (TEM). The orientation relationship between the YBCO film and the YSZ substrate was [001]YBCO∥[001]YSZ and [110]YBCO∥[100]YSZ for each half of the bicrystal film. However, the exact boundary geometry of the bicrystal substrate was not transferred to the film. The substrate boundary was straight while the film boundary was wavy. In several cases there was bending of the lattice confined within a distance of a few basal-plane lattice spacings from the boundary plane and microfaceting. No intergranular secondary phase was observed but about 25% of the boundary was covered by c-axis-tilted YBCO grains and a-axis-oriented grains, both of which were typically adjacent to CuO grains or surrounded by a thin Cu-rich amorphous layer.
Resumo:
The microstructure of artificial grain boundaries in YBa2Cu3O7-δ (YBCO) thin films grown on [001] tilt YZrO2 (YSZ) bicrystal substrates has been characterized using transmission electron microscopy and atomic force microscopy. Despite a relatively straight morphology of the substrate boundaries, the film boundaries were wavy. The waviness was a result of the combined effects of grooving at the substrate boundaries prior to the film deposition and an island-growth mechanism for YBCO on YSZ substrates. The dihedral angle of the groove walls varied with the misorientation angle and depended on the symmetry of the substrate boundary. The amplitudes of the film boundary waviness compared well with the widths of the grooves. In addition, the grooves induced local bending of the YBCO lattice planes and additional tilt components perpendicular to the c-axis close to the film boundaries. © 1995.
Resumo:
Engineered grain boundary Josephson junctions in YBaCuO were formed on bicrystal Y-ZrO2 substrates. Laser deposited films were patterned into micron size microbridges. The authors obsd. a pronounced correlation between superconducting transport properties of grain boundary junctions and the misorientation angle θ between the two halves of the bicrystal. The crit. Josephson current Ic decreased about four orders of magnitude as θ was increased from 0 to 45 degrees. Clear microwave and magnetic field responses were obsd. at 77 K. At this temp., crit. current times normal resistance products, IcRn, of up to 1 mV were measured for low angle grain boundaries, and Shapiro steps were obsd. up to that voltage. DC SQUIDs were fabricated, and best performance at 77 K was obtained for θ = 32° with a 4-μm strip width. To utilize the higher IcRn value of a lower θ, submicron junctions have to be developed. [on SciFinder(R)]
Resumo:
The crystal structure of the modified unsymmetrically N, N'-substituted viologen chromophore, N-ethyl- N'-(2-phosphonoethyl)-4, 4'-bipyridinium dichloride 0.75 hydrate. (1) has been determined. Crystals are triclinic, space group P-1 with Z = 2 in a cell with a = 7.2550(1), b = 13.2038(5), c = 18.5752(7) Å, α = 86.495(3), β = 83.527(2), γ = 88.921(2)o. The two independent but pseudo-symmetrically related cations in the asymmetric unit form one-dimensional hydrogen-bonded chains through short homomeric phosphonic acid O-H...O links [2.455(4), 2.464(4)A] while two of the chloride anions are similarly strongly linked to phosphonic acid groups [O-H…Cl, 2.889(4), 2.896(4)Å]. The other two chloride anions together with the two water molecules of solvation (one with partial occupancy) form unusual cyclic hydrogen-bonded bis(Cl...water) dianion units which lie between the layers of bipyridylium rings of the cation chain structures with which they are weakly associated.