9 resultados para Spiny Dogfish

em Queensland University of Technology - ePrints Archive


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Ureaplasma species in amniotic fluid at the time of second-trimester amniocentesis increases the risk of preterm birth, but most affected pregnancies continue to term (Gerber et al. J Infect Dis 2003). We aimed to model intra-amniotic (IA) ureaplasma infection in spiny mice, a species with a relatively long gestation (39 days) that allows investigation of the disposition and possible clearance of ureaplasmas in the feto-placental compartment. Method: Pregnant spiny mice received IA injections of U. parvum serovar 6 (10µL, 1x104 colony-forming-units in PBS) or 10B media (10µL; control) at 20 days (d) of gestation (term=39d). At 37d fetuses (n=3 ureaplasma, n=4 control) were surgically delivered and tissues were collected for; bacterial culture, ureaplasma mba and urease gene expression by PCR, tissue WBC counts and indirect fluorescent antibody (IFA) staining using anti-ureaplasma serovar 6 (rabbit) antiserum. Maternal and fetal plasma IgG was measured by Western blot. Results: Ureaplasmas were not detected by culture or PCR in fetal or maternal tissues but were visualized by IFA within placental and fetal lung tissues, in association with inflammatory changes and elevated WBC counts (p<0.0001). Anti-ureaplasma IgG was detected in maternal (2/2 tested) and fetal (1/2 tested) plasma but not in controls (0/3). Conclusions: IA injection of ureaplasmas in mid-gestation spiny mice caused persistent fetal lung and placental infection even though ureaplasmas were undetectable using standard culture or PCR techniques. This is consistent with resolution of IA infection, which may occur in human pregnancies that continue to term despite detection of ureaplasmas in mid-gestation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The modern diet has become highly sweetened, resulting in unprecedented levels of sugar consumption, particularly among adolescents. While chronic long-term sugar intake is known to contribute to the development of metabolic disorders including obesity and type II diabetes, little is known regarding the direct consequences of long-term, binge-like sugar consumption on the brain. Because sugar can cause the release of dopamine in the nucleus accumbens (NAc) similarly to drugs of abuse, we investigated changes in the morphology of neurons in this brain region following short- (4 weeks) and long-term (12 weeks) binge-like sucrose consumption using an intermittent two-bottle choice paradigm. We used Golgi-Cox staining to impregnate medium spiny neurons (MSNs) from the NAc core and shell of short- and long-term sucrose consuming rats and compared these to age-matched water controls. We show that prolonged binge-like sucrose consumption significantly decreased the total dendritic length of NAc shell MSNs compared to age-matched control rats. We also found that the restructuring of these neurons resulted primarily from reduced distal dendritic complexity. Conversely, we observed increased spine densities at the distal branch orders of NAc shell MSNs from long-term sucrose consuming rats. Combined, these results highlight the neuronal effects of prolonged binge-like intake of sucrose on NAc shell MSN morphology.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background Alcoholism imposes a tremendous social and economic burden. There are relatively few pharmacological treatments for alcoholism, with only moderate efficacy, and there is considerable interest in identifying additional therapeutic options. Alcohol exposure alters SK-type potassium channel (SK) function in limbic brain regions. Thus, positive SK modulators such as chlorzoxazone (CZX), a US Food and Drug Administration–approved centrally acting myorelaxant, might enhance SK function and decrease neuronal activity, resulting in reduced alcohol intake. Methods We examined whether CZX reduced alcohol consumption under two-bottle choice (20% alcohol and water) in rats with intermittent access to alcohol (IAA) or continuous access to alcohol (CAA). In addition, we used ex vivo electrophysiology to determine whether SK inhibition and activation can alter firing of nucleus accumbens (NAcb) core medium spiny neurons. Results Chlorzoxazone significantly and dose-dependently decreased alcohol but not water intake in IAA rats, with no effects in CAA rats. Chlorzoxazone also reduced alcohol preference in IAA but not CAA rats and reduced the tendency for rapid initial alcohol consumption in IAA rats. Chlorzoxazone reduction of IAA drinking was not explained by locomotor effects. Finally, NAcb core neurons ex vivo showed enhanced firing, reduced SK regulation of firing, and greater CZX inhibition of firing in IAA versus CAA rats. Conclusions The potent CZX-induced reduction of excessive IAA alcohol intake, with no effect on the more moderate intake in CAA rats, might reflect the greater CZX reduction in IAA NAcb core firing observed ex vivo. Thus, CZX could represent a novel and immediately accessible pharmacotherapeutic intervention for human alcoholism. Key Words: Alcohol intake; intermittent; neuro-adaptation; nucleus accumbens; SK potassium channel

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A lectin detected in haemolymph from the Australian spiny lobster Panulirus cygnus agglutinated human ABO Group A cells to a higher titre than Group O or B. The lectin also agglutinated rat and sheep erythrocytes, with reactivity with rat erythrocytes strongly enhanced by treatment with the proteolytic enzyme papain, an observation consistent with reactivity via a glycolipid. The lectin, purified by affinity chromatography on fixed rat-erythrocyte stroma, was inhibited equally by N-acetylglucosamine and N-acetylgalactosamine. Comparison of data from gel filtration of haemolymph (behaving as a 1,800,000 Da macromolecule), and polyacrylamide gel electrophoresis of purified lectin (a single 67,000 Da band), suggested that in haemolymph the lecin was a multimer. The purified anti-A lectin autoprecipitated unless the storage solution contained chaotropic inhibitors (125 mmol/L sucrose: 500 mmol/L urea). The properties of this anti-A lectin and other similar lectins are consistent with a role in innate immunity in these invertebrates.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Australasian marsupials include three major radiations, the insectivorous/carnivorous Dasyuromorphia, the omnivorous bandicoots (Peramelemorphia), and the largely herbivorous diprotodontians. Morphologists have generally considered the bandicoots and diprotodontians to be closely related, most prominently because they are both syndactylous (with the 2nd and 3rd pedal digits being fused). Molecular studies have been unable to confirm or reject this Syndactyla hypothesis. Here we present new mitochondrial (mt) genomes from a spiny bandicoot (Echymipera rufescens) and two dasyurids, a fat-tailed dunnart (Sminthopsis crassicaudata) and a northern quoll (Dasyurus hallucatus). By comparing trees derived from pairwise base-frequency differences between taxa with standard (absolute, uncorrected) distance trees, we infer that composition bias among mt protein-coding and RNA sequences is sufficient to mislead tree reconstruction. This can explain incongruence between trees obtained from mt and nuclear data sets. However, after excluding major sources of compositional heterogeneity, both the “reduced-bias” mt and nuclear data sets clearly favor a bandicoot plus dasyuromorphian association, as well as a grouping of kangaroos and possums (Phalangeriformes) among diprotodontians. Notably, alternatives to these groupings could only be confidently rejected by combining the mt and nuclear data. Elsewhere on the tree, Dromiciops appears to be sister to the monophyletic Australasian marsupials, whereas the placement of the marsupial mole (Notoryctes) remains problematic. More generally, we contend that it is desirable to combine mt genome and nuclear sequences for inferring vertebrate phylogeny, but as separately modeled process partitions. This strategy depends on detecting and excluding (or accounting for) major sources of nonhistorical signal, such as from compositional nonstationarity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The semiaquatic platypus and terrestrial echidnas (spiny anteaters) are the only living egg-laying mammals (monotremes). The fossil record has provided few clues as to their origins and the evolution of their ecological specializations; however, recent reassignment of the Early Cretaceous Teinolophos and Steropodon to the platypus lineage implies that platypuses and echidnas diverged >112.5 million years ago, reinforcing the notion of monotremes as living fossils. This placement is based primarily on characters related to a single feature, the enlarged mandibular canal, which supplies blood vessels and dense electrosensory receptors to the platypus bill. Our reevaluation of the morphological data instead groups platypus and echidnas to the exclusion of Teinolophos and Steropodon and suggests that an enlarged mandibular canal is ancestral for monotremes (partly reversed in echidnas, in association with general mandibular reduction). A multigene evaluation of the echidna–platypus divergence using both a relaxed molecular clock and direct fossil calibrations reveals a recent split of 19–48 million years ago. Platypus-like monotremes (Monotrematum) predate this divergence, indicating that echidnas had aquatically foraging ancestors that reinvaded terrestrial ecosystems. This ecological shift and the associated radiation of echidnas represent a recent expansion of niche space despite potential competition from marsupials. Monotremes might have survived the invasion of marsupials into Australasia by exploiting ecological niches in which marsupials are restricted by their reproductive mode. Morphology, ecology, and molecular biology together indicate that Teinolophos and Steropodon are basal monotremes rather than platypus relatives, and that living monotremes are a relatively recent radiation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The cable equation is one of the most fundamental equations for modeling neuronal dynamics. Cable equations with a fractional order temporal derivative have been introduced to model electrotonic properties of spiny neuronal dendrites. In this paper, the fractional cable equation involving two integro-differential operators is considered. The Galerkin finite element approximations of the fractional cable equation are proposed. The main contribution of this work is outlined as follow: • A semi-discrete finite difference approximation in time is proposed. We prove that the scheme is unconditionally stable, and the numerical solution converges to the exact solution with order O(Δt). • A semi-discrete difference scheme for improving the order of convergence for solving the fractional cable equation is proposed, and the numerical solution converges to the exact solution with order O((Δt)2). • Based on the above semi-discrete difference approximations, Galerkin finite element approximations in space for a full discretization are also investigated. • Finally, some numerical results are given to demonstrate the theoretical analysis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The rat nucleus accumbens contains medium-sized, spiny projection neurons and intrinsic, local circuit neurons, or interneurons. Sub-classes of interneurons, revealed by calretinin (CR) or parvalbumin (PV) immunoreactivity or reduced nicotinamide adenine dinucleotide phosphate (NADPH)-diaphorase histochemistry, were compared in the nucleus accumbens core, shell and rostral pole. CR, PV and NADPH-diaphorase-containing neurons are shown to form three non-co-localising populations in these three areas. No significant differences in neuronal population densities were found between the subterritories. NADPH-diaphorase-containing neurons could be further separated morphologically into three sub-groups, but CR- and PV-immunoreactive neurons form homogeneous populations. Ultrastructurally, NADPH-diaphorase-, CR- and PV-containing neurons in the nucleus accumbens all possess nuclear indentations. These are deeper and fewer in neurons immunoreactive for PV than in CR- and NADPH-diaphorase-containing neurons. CR-immunoreactive boutons form asymmetrical and symmetrical synaptic specialisations on spines, dendrites and somata, while PV-immunoreactive boutons make only symmetrical synaptic specialisations. Both CR- and PV-immunoreactive boutons form symmetrical synaptic specialisations with medium-sized spiny neurons and contact other CR- and PV-immunoreactive somata, respectively. A novel non-carcinogenic substrate for the peroxidase reaction (Vector Slate Grey, SG) was found to be characteristically electron-dense and may be distinguishable from the diaminobenzidine reaction product. We conclude that the three markers used in this study are localised in distinct populations of nucleus accumbens interneurons. Our studies of their synaptic connections contribute to an increased understanding of the intrinsic circuitry of this area.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Both tyrosine hydroxylase-positive fibres from the mesolimbic dopamine system and amygdala projection fibres from the basolateral nucleus are known to terminate heavily in the nucleus accumbens. Caudal amygdala fibres travelling dorsally via the stria terminalis project densely to the nucleus accumbens shell, especially in the dopamine rich septal hook. The amygdala has been associated with the recognition of emotionally relevant stimuli while the mesolimbic dopamine system is implicated with reward mechanisms. There is behavioural and electrophysiological evidence that the amygdala input to the nucleus accumbens is modulated by the mesolimbic dopamine input, but it is not known how these pathways interact anatomically within the nucleus accumbens. Using a variety of neuroanatomical techniques including anterograde and retrograde tracing, immunocytochemistry and intracellular filling, we have demonstrated convergence of these inputs on to medium-sized spiny neurons. The terminals of the basolateral amygdala projection make asymmetrical synapses predominantly on the heads of spines which also receive on their necks or adjacent dendrites, symmetrical synaptic input from the mesolimbic dopamine system. Some of these neurons have also been identified as projection neurons, possibly to the ventral pallidum. We have shown a synaptic level how dopamine is positioned to modulate excitatory limbic input in the nucleus accumbens.