3 resultados para Spect

em Queensland University of Technology - ePrints Archive


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Key points • The clinical aims of MR spectroscopy (MRS) in seizure disorders are to help identify, localize and characterize epileptogenic foci. • Lateralizing MRS abnormalities in temporal lobe epilepsy (TLE) may be used clinically in combination with structural and T2 MRI measurements together with other techniques such as EEG, PET and SPECT. • Characteristic metabolite abnormalities are decreased N-acetylaspartate (NAA) with increased choline (Cho) and myoinositol (mI) (short-echo time). • Contralateral metabolite abnormalities are frequently seen in TLE, but are of uncertain significance. • In extra-temporal epilepsy, metabolite abnormalities may be seen where MR imaging (MRI) is normal; but may not be sufficiently localized to be useful clinically. • MRS may help to characterize epileptogenic lesions visible on MRI (aggressive vs. indolent neoplastic, dysplasia). • Spectral editing techniques are required to evaluate specific epilepsy-relevant metabolites (e.g. -aminobutyric acid (GABA)), which may be useful in drug development and evaluation. • MRS with phosphorus (31P) and other nuclei probe metabolism of epilepsy, but are less useful clinically. • There is potential for assessing the of drug mode of action and efficacy through 13C carbon metabolite measurements, while changes in sodium homeostasis resulting from seizure activity may be detected with 23Na MRS.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

To maximise the capacity of the rail lineand provide a reliable service for pas-sengers throughout the day, regulation of train service to maintain steady service headway is es-sential. In most current metro systems, train usually starts coasting at a fixed distance from the departed station to achieve service regulation. However, this approach is only effective with re-spect to a nominal operational condition of train schedule but not necessarily the current service demand. Moreover, it is not simply to identify the necessary starting point for coasting under the run time constraints of current service conditions since train movement is attributed by a large number of factors, most of which are non-linear and inter-dependent. This paper presents an ap-plication of classical measures to search for the appropriate coasting point to meet a specified inter-station run time and they can be integrated in the on-board Automatic Train Operation (ATO) system and have the potential for on-line implementation in making a set of coasting command decisions.