437 resultados para Space Perception

em Queensland University of Technology - ePrints Archive


Relevância:

100.00% 100.00%

Publicador:

Resumo:

It has been shown that active control of locomotion increases accuracy and precision of nonvisual space perception, but psychological mechanisms of this enhancement are poorly understood. The present study explored a hypothesis that active control of locomotion enhances space perception by facilitating crossmodal interaction between visual and nonvisual spatial information. In an experiment, blindfolded participants walked along a linear path under one of the following two conditions: (1) They walked by themselves following a guide rope; and (2) they were led by an experimenter. Subsequently, they indicated the walked distance by tossing a beanbag to the origin of locomotion. The former condition gave participants greater control of their locomotion, and thus represented a more active walking condition. In addition, before each trial, half the participants viewed the room in which they performed the distance perception task. The other half remained blindfolded throughout the experiment. Results showed that although the room was devoid of any particular cues for walked distances, visual knowledge of the surroundings improved the precision of nonvisual distance perception. Importantly, however, the benefit of preview was observed only when participants walked more actively. This indicates that active control of locomotion allowed participants to better utilize their visual memory of the environment for perceiving nonvisually encoded distance, suggesting that active control of locomotion served as a catalyst for integrating visual and nonvisual information to derive spatial representations of higher quality.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Here, we investigate the genetic basis of human memory in healthy individuals and the potential role of two polymorphisms, previously implicated in memory function. We have explored aspects of retrospective and prospective memory including semantic, short term, working and long-term memory in conjunction with brain derived neurotrophic factor (BDNF) and tumor necrosis factor-alpha (TNF-alpha). The memory scores for healthy individuals in the population were obtained for each memory type and the population was genotyped via restriction fragment length polymorphism for the BDNF rs6265 (Val66Met) SNP and via pyrosequencing for the TNF-alpha rs113325588 SNP. Using univariate ANOVA, a significant association of the BDNF polymorphism with visual and spatial memory retention and a significant association of the TNF-alpha polymorphism was observed with spatial memory retention. In addition, a significant interactive effect between BDNF and TNF-alpha polymorphisms was observed in spatial memory retention. In practice visual memory involves spatial information and the two memory systems work together, however our data demonstrate that individuals with the Val/Val BDNF genotype have poorer visual memory but higher spatial memory retention, indicating a level of interaction between TNF-alpha and BDNF in spatial memory retention. This is the first study to use genetic analysis to determine the interaction between BDNF and TNF-alpha in relation to memory in normal adults and provides important information regarding the effect of genetic determinants and gene interactions on human memory.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Approaches to art-practice-as-research tend to draw a distinction between the processes of creative practice and scholarly reflection. According to this template, the two sites of activity – studio/desk, work/writing, body/mind – form the ‘correlative’ entity known as research. Creative research is said to be produced by the navigation of world and thought: spaces that exist in a continual state of tension with one another. Either we have the studio tethered to brute reality while the desk floats free as a site for the fluid cross-pollination of texts and concepts. Or alternatively, the studio is characterized by the amorphous, intuitive play of forms and ideas, while the desk represents its cartography, mapping and fixing its various fluidities. In either case, the research status of art practice is figured as a fundamentally riven space. However, the nascent philosophy of Speculative Realism proposes a different ontology – one in which the space of human activity comprises its own reality, independent of human perception. The challenge it poses to traditional metaphysics is to rethink the world as if it were a real space. When applied to practice-led research, this reconceptualization challenges the creative researcher to consider creative research as a contiguous space – a topology where thinking and making are not dichotomous points but inflections in an amorphous and dynamic field. Instead of being subject to the vertical tension between earth and air, a topology of practice emphasizes its encapsulated, undulating reality – an agentive ‘object’ formed according to properties of connectedness, movement and differentiation. Taking the central ideas of Quentin Meillassoux and Graham Harman as a point of departure, this paper will provide a speculative account of the interplay of spatialities that characterise the author’s studio practice. In so doing, the paper will model the innovative methodological potential produced by the analysis of topological dimensions of the studio and the way they can be said to move beyond the ‘geo-critical’ divide.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

For future planetary robot missions, multi-robot-systems can be considered as a suitable platform to perform space mission faster and more reliable. In heterogeneous robot teams, each robot can have different abilities and sensor equipment. In this paper we describe a lunar demonstration scenario where a team of mobile robots explores an unknown area and identifies a set of objects belonging to a lunar infrastructure. Our robot team consists of two exploring scout robots and a mobile manipulator. The mission goal is to locate the objects within a certain area, to identify the objects, and to transport the objects to a base station. The robots have a different sensor setup and different capabilities. In order to classify parts of the lunar infrastructure, the robots have to share the knowledge about the objects. Based on the different sensing capabilities, several information modalities have to be shared and combined by the robots. In this work we propose an approach using spatial features and a fuzzy logic based reasoning for distributed object classification.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, a space fractional di®usion equation (SFDE) with non- homogeneous boundary conditions on a bounded domain is considered. A new matrix transfer technique (MTT) for solving the SFDE is proposed. The method is based on a matrix representation of the fractional-in-space operator and the novelty of this approach is that a standard discretisation of the operator leads to a system of linear ODEs with the matrix raised to the same fractional power. Analytic solutions of the SFDE are derived. Finally, some numerical results are given to demonstrate that the MTT is a computationally e±cient and accurate method for solving SFDE.