33 resultados para Southwestern Montana
em Queensland University of Technology - ePrints Archive
Resumo:
Although Basin and Range style extension affected several areas of western Mexico since the Late Eocene, extension in the Gulf of California region (the Gulf Extensional Province GEP) is thought to have started as subduction waned and ended at ~14 12.5 Ma. A general consensus also exists in considering the mid Miocene Comondú group as a suprasubduction volcanic arc. Our new integration of the geology of the south east Gulf region, backed by 43 new Ar Ar and U Pb mineral ages and geochemical studies, document a widespread phase of extension in the southern GEP between latest Oligocene and Early Miocene that subsequently focused in the region of the future Gulf in the Middle Miocene. Upper Oligocene to Lower Miocene rocks across the southern Sierra Madre Occidental (SMO)(northern Nayarit and southern Sinaloa) were affected by major ~N S to NNW striking normal faults prior to ~21 Ma. Then, between ~21 and 11 Ma, a system of NNW-SSE high angle extensional faults continued extending the southwestern side of the SMO. Rhyolitic domes, shallow intrusive bodies, and lesser basalts were emplaced along this extensional belt at 20-17 Ma. In northern Sinaloa, large grabens were floored by huge dome complexes at ~21-17 Ma and filled by continental sediments with interlayered basalts dated at 15-14 Ma, a setting and timing very similar to Sonora. Early to Middle Miocene volcanism, including the largely volcaniclastic Comondú strata in Baja California Sur, was thus emplaced in rift basins and was likely associated to decompression melting of upper mantle (inducing crustal partial melting) rather than to fluxing by fluids from the young subducting plate. Along the Nayarit and Sinaloa coast, flatlying basaltic lava flows dated at 11-10 Ma are exposed just above the present sea level. Here, crustal thickness is almost half that in the unextended core of the SMO, implying significant lithosphere stretching before ~11 Ma. Our study shows that rifting began much earlier than Late Miocene and provided a fundamental control on the style and composition of volcanism from at least 30 Ma. We envision a sustained period of lithospheric stretching and magmatism during which the pace and breadth of extension changed at ~20-18 Ma to be narrower and likely more rapid, and again at ~12.5 Ma, when the kinematics of rifting became more oblique.
Resumo:
Although Basin and Range–style extension affected large areas of western Mexico after the Late Eocene, most consider that extension in the Gulf of California region began as subduction waned and ended ca. 14–12.5 Ma. A general consensus also exists in considering Early and Middle Miocene volcanism of the Sierra Madre Occidental and Comondú Group as subduction related, whereas volcanism after ca. 12.5 Ma is extension related. Here we present a new regional geologic study of the eastern Gulf of California margin in the states of Nayarit and Sinaloa, Mexico, backed by 43 new Ar-Ar and U-Pb mineral ages, and geochemical data that document an earlier widespread phase of extension. This extension across the southern and central Gulf Extensional Province began between Late Oligocene and Early Miocene time, but was focused in the region of the future Gulf of California in the Middle Miocene. Late Oligocene to Early Miocene rocks across northern Nayarit and southern Sinaloa were affected by major approximately north-south– to north-northwest– striking normal faults prior to ca. 21 Ma. Between ca. 21 and 11 Ma, a system of north-northwest–south-southeast high angle extensional faults continued extending the southwestern side of the Sierra Madre Occidental. Rhyolitic domes, shallow intrusive bodies, and lesser basalts were emplaced along this extensional belt at 20–17 Ma. Rhyolitic rocks, in particular the domes and lavas, often show strong antecrystic inheritance but only a few Mesozoic or older xenocrysts, suggesting silicic magma generation in the mid-upper crust triggered by an extension induced basaltic infl ux. In northern Sinaloa, large grabens were occupied by huge volcanic dome complexes ca. 21–17 Ma and filled by continental sediments with interlayered basalts dated as 15–14 Ma, a stratigraphy and timing very similar to those found in central Sonora (northeastern Gulf of California margin). Early to Middle Miocene volcanism occurred thus in rift basins, and was likely associated with decompression melting of upper mantle (inducing crustal partial melting) rather than with fluxing by fluids from the young and slow subducting microplates. Along the eastern side of the Gulf of California coast, from Farallón de San Ignacio island offshore Los Mochis, Sinaloa, to San Blas, Nayarit, a strike distance of >700 km, flat lying basaltic lavas dated as ca. 11.5–10 Ma are exposed just above the present sea level. Here crustal thickness is almost half that in the unextended core of the adjacent Sierra Madre Occidental, implying signifi cant lithosphere stretching before ca. 11 Ma. This mafic pulse, with subdued Nb-Ta negative spikes, may be related to the detachment of the lower part of the subducted slab, allowing an upward asthenospheric flow into an upper mantle previously modified by fluid fluxes related to past subduction. Widespread eruption of very uniform oceanic island basalt–like lavas occurred by the late Pliocene and Pleistocene, only 20 m.y. after the onset of rifting and ~9 m.y. after the end of subduction, implying that preexisting subduction-modified mantle had now become isolated from melt source regions. Our study shows that rifting across the southern-central Gulf Extensional Province began much earlier than the Late Miocene and provided a fundamental control on the style and composition of volcanism from at least 30 Ma. We envision a sustained period of lithospheric stretching and magmatism during which the pace and breadth of extension changed ca. 20–18 Ma to be narrower, and again after ca. 12.5 Ma, when the kinematics of rifting became more oblique.
Resumo:
Crash data involving taxis indicates that such drivers are over represented in crashes and are one to two times more likely to be involved in a fatality crash. This study reports on the pre intervention survey to provide a baseline measure of the self-reported attitudes and corresponding driving behaviours of a sample of taxi drivers. Results indicate that some taxi drivers willingly admit to engaging in unsafe driving practices. In addition, preliminary results of a post intervention survey revealed that taxi drivers’ safety perceptions, attitude and behaviours improved after completing a Driving Diary intervention.
Resumo:
Work-related driving safety is an emerging concern for Australian and overseas organisations. An in depth investigation was undertaken into a group of fleet drivers’ attitudes regarding what personal and environment factors have the greatest impact upon driving behaviours. A number of new and unique factors not previously identified were found including: vehicle features, vehicle ownership, road conditions, weather, etc. The major findings of the study are discussed in regards to practical solutions to improve fleet safety.
Resumo:
Many nations are experiencing a decline in the number of graduating engineers, an overall poor preparedness for engineering studies in tertiary institutions, and a lack of diversity in the field. Given the increasing importance of mathematics, science, engineering, and technology in our world, it is imperative that we foster an interest and drive to participate in engineering from an early age. This discuission paper argues for the intergration of engineering education within the elementary and middle school mathematics curricula. In doing so, we offer a definition of engineering education and address its core goals; consider some perceptions of engineering and engineering education held by teachers and students; and offer one approach to promoting engineering education within the elementary and middle school mathematics curriculum, namely through mathematical modeling.
Resumo:
This paper does two things. Firstly, it examines the literature that coalesces around theoretical models of teacher professional development (PD) within a professional learning community (PLC). Secondly, these models are used to analyse support provided to two year 3 teachers, while implementing the draft Queensland mathematics syllabus. The findings from this study suggest that the development of this small PLC extended the teachers’ Zone of Enactment which in turn led to teacher action and reflection. This was demonstrated by the teachers leading their own learning as well as that of their students.
Resumo:
Carbon pools and fluxes were quantified along an environmental gradient in northern Arizona. Data are presented on vegetation, litter, and soil C pools and soil CO2 fluxes from ecosystems ranging from shrub-steppe through woodlands to coniferous forest and the ecotones in between. Carbon pool sizes and fluxes in these semiarid ecosystems vary with temperature and precipitation and are strongly influenced by canopy cover. Ecosystem respiration is approximately 50 percent greater in the more mesic, forest environment than in the dry shrub-steppe environment. Soil respiration rates within a site vary seasonally with temperature but appear to be constrained by low soil moisture during dry summer months, when approximately 75% of total annual soil respiration occurs. Total annual amount of CO2 respired across all sites is positively correlated with annual precipitation and negatively correlated with temperature. Results suggest that changes in the amount and periodicity of precipitation will have a greater effect on C pools and fluxes than will changes in temperature :in the semiarid Southwestern United States.
Resumo:
Voluminous (≥3·9 × 105 km3), prolonged (∼18 Myr) explosive silicic volcanism makes the mid-Tertiary Sierra Madre Occidental province of Mexico one of the largest intact silicic volcanic provinces known. Previous models have proposed an assimilation–fractional crystallization origin for the rhyolites involving closed-system fractional crystallization from crustally contaminated andesitic parental magmas, with <20% crustal contributions. The lack of isotopic variation among the lower crustal xenoliths inferred to represent the crustal contaminants and coeval Sierra Madre Occidental rhyolite and basaltic andesite to andesite volcanic rocks has constrained interpretations for larger crustal contributions. Here, we use zircon age populations as probes to assess crustal involvement in Sierra Madre Occidental silicic magmatism. Laser ablation-inductively coupled plasma-mass spectrometry analyses of zircons from rhyolitic ignimbrites from the northeastern and southwestern sectors of the province yield U–Pb ages that show significant age discrepancies of 1–4 Myr compared with previously determined K/Ar and 40Ar/39Ar ages from the same ignimbrites; the age differences are greater than the errors attributable to analytical uncertainty. Zircon xenocrysts with new overgrowths in the Late Eocene to earliest Oligocene rhyolite ignimbrites from the northeastern sector provide direct evidence for some involvement of Proterozoic crustal materials, and, potentially more importantly, the derivation of zircon from Mesozoic and Eocene age, isotopically primitive, subduction-related igneous basement. The youngest rhyolitic ignimbrites from the southwestern sector show even stronger evidence for inheritance in the age spectra, but lack old inherited zircon (i.e. Eocene or older). Instead, these Early Miocene ignimbrites are dominated by antecrystic zircons, representing >33 to ∼100% of the dated population; most antecrysts range in age between ∼20 and 32 Ma. A sub-population of the antecrystic zircons is chemically distinct in terms of their high U (>1000 ppm to 1·3 wt %) and heavy REE contents; these are not present in the Oligocene ignimbrites in the northeastern sector of the Sierra Madre Occidental. The combination of antecryst zircon U–Pb ages and chemistry suggests that much of the zircon in the youngest rhyolites was derived by remelting of partially molten to solidified igneous rocks formed during preceding phases of Sierra Madre Occidental volcanism. Strong Zr undersaturation, and estimations for very rapid dissolution rates of entrained zircons, preclude coeval mafic magmas being parental to the rhyolite magmas by a process of lower crustal assimilation followed by closed-system crystal fractionation as interpreted in previous studies of the Sierra Madre Occidental rhyolites. Mafic magmas were more probably important in providing a long-lived heat and material flux into the crust, resulting in the remelting and recycling of older crust and newly formed igneous materials related to Sierra Madre Occidental magmatism.
Resumo:
The world’s increasing complexity, competitiveness, interconnectivity, and dependence on technology generate new challenges for nations and individuals that cannot be met by “continuing education as usual” (The National Academies, 2009). With the proliferation of complex systems have come new technologies for communication, collaboration, and conceptualization. These technologies have led to significant changes in the forms of mathematical thinking that are required beyond the classroom. This paper argues for the need to incorporate future-oriented understandings and competencies within the mathematics curriculum, through intellectually stimulating activities that draw upon multidisciplinary content and contexts. The paper also argues for greater recognition of children’s learning potential, as increasingly complex learners capable of dealing with cognitively demanding tasks.
Resumo:
HRTEM has been used to examine illite/smectite from the Mancos shale, rectorite from Garland County, Arkansas; illite from Silver Hill, Montana; Na-smectite from Crook County, Wyoming; corrensite from Packwood, Washington; and diagenetic chlorite from the Tuscaloosa formation. Thin specimens were prepared by ion milling, ultra-microtome sectioning and/or grain dispersal on a porous carbon substrate. Some smectite-bearing clays were also examined after intercalation with dodecylamine hydrochloride (DH). Intercalation of smectite with DH proved to be a reliable method of HRTEM imaging of expanded smectite, d(001) 16 A which could then be distinguished from unexpanded illite, d(001) 10 A. Lattice fringes of basal spacings of DH-intercalated rectorite and illite/smectite showed 26 A periodicity. These data support XRD studies which suggest that these samples are ordered, interstratified varieties of illite and smectite. The ion-thinned, unexpanded corrensite sample showed discrete crystallites containing 10 A and 14 A basal spacings corresponding with collapsed smectite and chlorite, respectively. Regions containing disordered layers of chlorite and smectite were also noted. Crystallites containing regular alternations of smectite and chlorite were not common. These HRTEM observations of corrensite did not corroborate XRD data. Particle sizes parallel to the c axis ranged widely for each sample studied, and many particles showed basal dimensions equivalent to > five layers. -J.M.H.
Resumo:
This article focuses on problem solving activities in a first grade classroom in a typical small community and school in Indiana. But, the teacher and the activities in this class were not at all typical of what goes on in most comparable classrooms; and, the issues that will be addressed are relevant and important for students from kindergarten through college. Can children really solve problems that involve concepts (or skills) that they have not yet been taught? Can children really create important mathematical concepts on their own – without a lot of guidance from teachers? What is the relationship between problem solving abilities and the mastery of skills that are widely regarded as being “prerequisites” to such tasks?Can primary school children (whose toolkits of skills are limited) engage productively in authentic simulations of “real life” problem solving situations? Can three-person teams of primary school children really work together collaboratively, and remain intensely engaged, on problem solving activities that require more than an hour to complete? Are the kinds of learning and problem solving experiences that are recommended (for example) in the USA’s Common Core State Curriculum Standards really representative of the kind that even young children encounter beyond school in the 21st century? … This article offers an existence proof showing why our answers to these questions are: Yes. Yes. Yes. Yes. Yes. Yes. And: No. … Even though the evidence we present is only intended to demonstrate what’s possible, not what’s likely to occur under any circumstances, there is no reason to expect that the things that our children accomplished could not be accomplished by average ability children in other schools and classrooms.
Resumo:
This paper describes a generic and integrated solar powered remote Unmanned Air Vehicles (UAV) and Wireless Sensor Network (WSN) gas sensing system. The system uses a generic gas sensing system for CH4 and CO2 concentrations using metal oxide (MoX) and non-dispersive infrared sensors, and a new solar cell encapsulation method to power the UASs as well as a data management platform to store, analyse and share the information with operators and external users. The system was successfully field tested at ground and low altitudes, collecting, storing and transmitting data in real time to a central node for analysis and 3D mapping. The system can be used in a wide range of outdoor applications, especially in agriculture, bushfires, mining studies, opening the way to a ubiquitous low cost environmental monitoring. A video of the bench and flight test performed can be seen in the following link https://www.youtube.com/watch?v=Bwas7stYIxQ.
Resumo:
OBJECTIVE The aim of the study is to examine the spatiotemporal pattern of Japanese Encephalitis (JE) in mainland China during 2002-2010. Specific objectives of the study were to quantify the temporal variation in incidence of JE cases, to determine if clustering of JE cases exists, to detect high risk spatiotemporal clusters of JE cases and to provide evidence-based preventive suggestions to relevant stakeholders. METHODS Monthly JE cases at the county level in mainland China during 2002-2010 were obtained from the China Information System for Diseases Control and Prevention (CISDCP). For the purpose of the analysis, JE case counts for nine years were aggregated into four temporal periods (2002; 2003-2005; 2006; and 2007-2010). Local Indicators of Spatial Association and spatial scan statistics were performed to detect and evaluate local high risk space-time clusters. RESULTS JE incidence showed a decreasing trend from 2002 to 2005 but peaked in 2006, then fluctuated over the study period. Spatial cluster analysis detected high value clusters, mainly located in Southwestern China. Similarly, we identified a primary spatiotemporal cluster of JE in Southwestern China between July and August, with the geographical range of JE transmission increasing over the past years. CONCLUSION JE in China is geographically clustered and its spatial extent dynamically changed during the last nine years in mainland China. This indicates that risk factors for JE infection are likely to be spatially heterogeneous. The results may assist national and local health authorities in the development/refinement of a better preventive strategy and increase the effectiveness of public health interventions against JE transmission.
Resumo:
Reforms to the basic education system in China have reflected an increasing awareness of and openness to new ideas from the global education sphere. Many of the concepts involved in the development and implementation of these reforms, including adopting holistic perspectives of student development; decentralising school governance to facilitate local decision-making to address local needs; and, an increased focus on practical, lifelong learning for all involved in schools, have been promoted in research and policies throughout the world. While working within this global context, the system of schooling in China has retained a unique character that is quite different from education in the West. Drawing on an international project on school transformation, this chapter aims to examine how five secondary schools in Chongqing, a municipality in Southwestern China, have harnessed and aligned their resources to provide effective school governance following the curriculum reforms. Furthermore, the chapter will examine the similarities and differences between the organisational structures and cultures of these schools in China and successful schools in Australia, England, Finland, Wales and the United States.