233 resultados para Soil degradation

em Queensland University of Technology - ePrints Archive


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Through a forest inventory in parts of the Amudarya river delta, Central Asia, we assessed the impact of ongoing forest degradation on the emissions of greenhouse gases (GHG) from soils. Interpretation of aerial photographs from 2001, combined with data on forest inventory in 1990 and field survey in 2003 provided comprehensive information about the extent and changes of the natural tugai riparian forests and tree plantations in the delta. The findings show an average annual deforestation rate of almost 1.3% and an even higher rate of land use change from tugai forests to land with only sparse tree cover. These annual rates of deforestation and forest degradation are higher than the global annual forest loss. By 2003, the tugai forest area had drastically decreased to about 60% compared to an inventory in 1990. Significant differences in soil GHG emissions between forest and agricultural land use underscore the impact of the ongoing land use change on the emission of soil-borne GHGs. The conversion of tugai forests into irrigated croplands will release 2.5 t CO2 equivalents per hectare per year due to elevated emissions of N2O and CH4. This demonstrates that the ongoing transformation of tugai forests into agricultural land-use systems did not only lead to a loss of biodiversity and of a unique ecosystem, but substantially impacts the biosphere-atmosphere exchange of GHG and soil C and N turnover processes.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The low stream salinity naturally in the Nebine-Mungallala Catchment, extent of vegetation retention, relatively low rainfall and high evaporation indicates that there is a relatively low risk of rising shallow groundwater tables in the catchment. Scalding caused by wind and water erosion exposing highly saline sub-soils is a more important regional issue, such as in the Homeboin area. Local salinisation associated with evaporation of bore water from free flowing bore drains and bores is also an important land degradation issue particularly in the lower Nebine, Wallam and Mungallala Creeks. The replacement of free flowing artesian bores and bore drains with capped bores and piped water systems under the Great Artesian Basin bore rehabilitation program is addressing local salinisation and scalding in the vicinity of bore drains and preventing the discharge of saline bore water to streams. Three principles for the prevention and control of salinity in the Nebine Mungallala catchment have been identified in this review: • Avoid salinity through avoiding scalds – i.e. not exposing the near-surface salt in landscape through land degradation; • Riparian zone management: Scalding often occurs within 200m or so of watering lines. Natural drainage lines are most likely to be overstocked, and thus have potential for scalding. Scalding begins when vegetation is removed, and without that binding cover, wind and water erosion exposes the subsoil; and • Monitoring of exposed or grazed soil areas. Based on the findings of the study, we make the following recommendations: 1. Undertake a geotechnical study of existing maps and other data to help identify and target areas most at risk of rising water tables causing salinity. Selected monitoring should then be established using piezometers as an early warning system. 2. SW NRM should financially support scald reclamation activity through its various funding programs. However, for this to have any validity in the overall management of salinity risk, it is critical that such funding require the landholder to undertake a salinity hazard/risk assessment of his/her holding. 3. A staged approach to funding may be appropriate. In the first instance, it would be reasonable to commence funding some pilot scald reclamation work with a view to further developing and piloting the farm hazard/risk assessment tools, and exploring how subsequent grazing management strategies could be incorporated within other extension and management activities. Once the details of the necessary farm level activities have been more clearly defined, and following the outcomes of the geotechnical review recommended above, a more comprehensive funding package could be rolled out to priority areas. 4. We recommend that best-practice grazing management training currently on offer should be enhanced with information about salinity risk in scald-prone areas, and ways of minimising the likelihood of scald formation. 5. We recommend that course material be developed for local students in Years 6 and 7, and that arrangements be made with local schools to present this information. Given the constraints of existing syllabi, we envisage that negotiations may have to be undertaken with the Department of Education in order for this material to be permitted to be used. We have contact with key people who could help in this if required. 6. We recommend that SW NRM continue to support existing extension activities such as Grazing Land Management and the Monitoring Made Easy tools. These aids should be able to be easily expanding to incorporate techniques for monitoring, addressing and preventing salinity and scalding. At the time of writing staff of SW NRM were actively involved in this process. It is important that these activities are adequately resourced to facilitate the uptake by landholders of the perception that salinity is an issue that needs to be addressed as part of everyday management. 7. We recommend that SW NRM consider investing in the development and deployment of a scenario-modelling learning support tool as part of the awareness raising and education activities. Secondary salinity is a dynamic process that results from ongoing human activity which mobilises and/or exposes salt occurring naturally in the landscape. Time scales can be short to very long, and the benefits of management actions can similarly have immediate or very long time frames. One way to help explain the dynamics of these processes is through scenario modelling.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Water reuse through greywater irrigation has been adopted worldwide and has been proposed as a potential sustainable solution to increased water demands. Despite widespread adoption there is limited domestic knowledge of greywater reuse, there is no pressure to produce lowlevel phosphorus products and current guidelines and legislation, such as those in Australia, may be inadequate due to the lack of long-term data to provide a sound scientific basis. Research has clearly identified phosphorus as a potential environmental risk to waterways from many forms of irrigation. To assess the sustainability of greywater irrigation, this study compared four residential lots that had been irrigated with greywater for four years and adjacent non-irrigated lots that acted as controls. Each lot was monitored for the volume of greywater applied and selected physic-chemical water quality parameters and soil chemistry profiles were analysed. The non-irrigated soil profiles showed low levels of phosphorus and were used as controls. The Mechlich3 Phosphorus ratio (M3PSR) and Phosphate Environmental Risk Index (PERI) were used to determine the environmental risk of phosphorus leaching from the irrigated soils. Soil phosphorus concentrations were compared to theoretical greywater irrigation loadings. The measured phosphorus soil concentrations and the estimated greywater loadings were of similar magnitude. Sustainable greywater reuse is possible; however incorrect use and/or a lack of understanding of how household products affect greywater can result in phosphorus posing a significant risk to the environment.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Batch, column and field lysimeter studies have been conducted to evaluate the concept of codisposal of retort water with Rundle (Queensland, Australia) waste shales. The batch studies indicated that degradation of a significant proportion of the total organic load occurs if the mixture is seeded with soil or compost. These results are compared with those from laboratory column studies and from the field lysimeter at the Rundle site. G.c.-m.s. analysis of some of the eluants indicated that significant degradation of the base-neutral fraction occurs even if no soil seed is added, and that degradation of this fraction was higher under anaerobic conditions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The heterogeneous photocatalytic water purification process has gained wide attention due to its effectiveness in degrading and mineralizing the recalcitrant organic compounds as well as the possibility of utilizing the solar UV and visible light spectrum. This paper aims to review and summarize the recently published works in the field of photocatalytic oxidation of toxic organic compounds such as phenols and dyes, predominant in waste water effluent. In this review, the effects of various operating parameters on the photocatalytic degradation of phenols and dyes are presented. Recent findings suggested that different parameters, such as type of photocatalyst and composition, light intensity, initial substrate concentration, amount of catalyst, pH of the reaction medium, ionic components in water, solvent types, oxidizing agents/electron acceptors, mode of catalyst application, and calcinations temperature can play an important role on the photocatlytic degradation of organic compounds in water environment. Extensive research has focused on the enhancement of photocatalysis by modification of TiO2 employing metal, non-metal and ion doping. Recent advances in TiO2 photocatalysis for the degradation of various phenols and dyes are also highlighted in this review.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Blends of lignin and poly(hydroxybutyrate) (PHB) were obtained by melt extrusion. They were buried in a garden soil for up to 12 months, and the extent and mechanism of degradation were investigated by gravimetric analysis, thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM) and Fourier transform infra-red spectroscopy (FTIR) over the entire range of compositions. The PHB films were disintegrated and lost 45 wt% of mass within 12 months. This value dropped to 12 wt% of mass when only 10 wt% of lignin was present, suggesting that lignin both inhibited and slowed down the rate of PHB degradation. TGA and DSC indicated structural changes, within the lignin/PHB matrix, with burial time, while FTIR results confirmed the fragmentation of the PHB polymer. XPS revealed an accumulation of biofilms on the surface of buried samples, providing evidence of a biodegradation mechanism. Significant surface roughness was observed with PHB films due to microbial attack caused by both loosely and strongly associated micro-organisms. The presence of lignin in the blends may have inhibited the colonisation of the micro-organisms and caused the blends to be more resistant to microbial attack. Analysis suggested that lignin formed strong hydrogen bonds with PHB in the buried samples and it is likely that the rate of breakdown of PHB is reduced, preventing rapid degradation of the blends.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The main factors affecting environmental sensitivity to degradation are soil, vegetation, climate and management, through either their intrinsic characteristics or by their interaction on the landscape. Different levels of degradation risks may be observed in response to particular combinations of the aforementioned factors. For instance, the combination of inappropriate management practices and intrinsically weak soil conditions will result in a severe degradation of the environment, while the combination of the same type of management with better soil conditions may lead to negligible degradation.The aim of this study was to identify factors and their impact on land degradation processes in three areas of the Basilicata region (southern Italy) using a procedure that couples environmental indices, GIS and crop-soil simulation models. Areas prone to desertification were first identified using the Environmental Sensitive Areas (ESA) procedure. An analysis for identifying the weight that each of the contributing factor (climate, soil, vegetation, management) had on the ESA was carried out using GIS techniques. The SALUS model was successfully executed to identify the management practices that could lead to better soil conditions to enhance land use sustainability. The best management practices were found to be those that minimized soil disturbance and increased soil organic carbon. Two alternative scenarios with improved soil quality and subsequently improving soil water holding capacity were used as mitigation measures. The ESA were recalculated and the effects of the mitigation measures suggested by the model were assessed. The new ESA showed a significant reduction on land degradation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Transition zones between bridge decks and rail tracks suffer early failure due to poor interaction between rail vehicles and sudden changes of stiffness. This has been an ongoing problem to rail industry and yet still no systematic studies appear to have been taken to maintain a gradually smoothening transmission of forces between the bridge and its approach. Differential settlement between the bridge deck and rail track in the transition zone is the fundamental issue, which negatively impacts the rail industry by causing passenger discomfort, early damage to infrastructure and vehicle components, speed reduction, and frequent maintenance cycles. Identification of mechanism of the track degradation and factors affecting is imperative to design any mitigation method for reducing track degradation rate at the bridge transition zone. Unfortunately this issue is still not well understood, after conducting a numbers of reviews to evaluate the key causes, and introducing a wide range of mitigation techniques. In this study, a comprehensive analysis of the available literature has been carried out to develop either a novel design framework or a mitigation technique for the bridge transition zone. This paper addresses three critical questions in relation to the track degradation at transition zone: (1) what are the causes of bridge transition track degradation?; (2) what are the available mitigation techniques in reducing the track degradation rate?; (3) what are the factors affecting on poor performance of the existing mitigation techniques?. It is found that the absence of soil-water response, dynamic loading response, and behaviour of geotechnical characteristics under long-term conditions in existing track transition design frameworks critically influence on the failures of existing mitigation techniques. This paper also evaluates some of the existing design frameworks to identify how each design framework addresses the track degradation at the bridge transition zone.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The hydrolysis of triasulfuron, metsulfuron-methyl and chlorsulfuron in aqueous buffer solutions and in soil suspensions at pH values ranging from 5.2 to 11.2 was investigated. Hydrolysis of all three compounds in both aqueous buffer and soil suspensions was highly pH-sensitive. The rate of hydrolysis was much faster in the acidic pH range (5.2-6.2) than under neutral and moderately alkaline conditions (8.2-9.4), but it increased rapidly as the pH exceeded 10.2. All three compounds degraded faster at pH 5.2 than at pH 11.2. Hydrolysis rates of all three compounds could be described well with pseudo-first-order kinetics. There were no significant differences (P =0.05) in the rate constants (k, day-1) of the three compounds in soil suspensions from those in buffer solutions within the pH ranges studied. A functional relationship based on the propensity of nonionic and anionic species of the herbicides to hydrolyse was used to describe the dependence of the 'rate constant' on pH. The hydrolysis involving attack by neutral water was at least 100-fold faster when the sulfonylurea herbicides were undissociated (acidic conditions) than when they were present as the anion at near neutral pH. In aqueous buffer solution at pH > 11, a prominent degradation pathway involved O-demethylation of metsulfuron-methyl to yield a highly polar degradate, and hydrolytic opening of the triazine ring. It is concluded that these herbicides are not likely to degrade substantially through hydrolysis in most agricultural (C) 2000 Society of Chemical Industry.