172 resultados para Software frameworks
em Queensland University of Technology - ePrints Archive
Resumo:
Few frameworks exist for the teaching and assessment of programming subjects that are coherent and logical. Nor are they sufficiently generic and adaptable to be used outside the particular tertiary institutions in which they were developed. This paper presents the Teaching and Assessment of Software Development (TASD) frame-work. We describe its development and implementation at an Australian university and demonstrate, with examples, how it has been used, with supporting data. Extracts of criteria sheets (grading rubrics) for a variety of assessment tasks are included. The numerous advantages of this new framework are discussed with comparisons made to those reported in the published literature.
Resumo:
Ecological problems are typically multi faceted and need to be addressed from a scientific and a management perspective. There is a wealth of modelling and simulation software available, each designed to address a particular aspect of the issue of concern. Choosing the appropriate tool, making sense of the disparate outputs, and taking decisions when little or no empirical data is available, are everyday challenges facing the ecologist and environmental manager. Bayesian Networks provide a statistical modelling framework that enables analysis and integration of information in its own right as well as integration of a variety of models addressing different aspects of a common overall problem. There has been increased interest in the use of BNs to model environmental systems and issues of concern. However, the development of more sophisticated BNs, utilising dynamic and object oriented (OO) features, is still at the frontier of ecological research. Such features are particularly appealing in an ecological context, since the underlying facts are often spatial and temporal in nature. This thesis focuses on an integrated BN approach which facilitates OO modelling. Our research devises a new heuristic method, the Iterative Bayesian Network Development Cycle (IBNDC), for the development of BN models within a multi-field and multi-expert context. Expert elicitation is a popular method used to quantify BNs when data is sparse, but expert knowledge is abundant. The resulting BNs need to be substantiated and validated taking this uncertainty into account. Our research demonstrates the application of the IBNDC approach to support these aspects of BN modelling. The complex nature of environmental issues makes them ideal case studies for the proposed integrated approach to modelling. Moreover, they lend themselves to a series of integrated sub-networks describing different scientific components, combining scientific and management perspectives, or pooling similar contributions developed in different locations by different research groups. In southern Africa the two largest free-ranging cheetah (Acinonyx jubatus) populations are in Namibia and Botswana, where the majority of cheetahs are located outside protected areas. Consequently, cheetah conservation in these two countries is focussed primarily on the free-ranging populations as well as the mitigation of conflict between humans and cheetahs. In contrast, in neighbouring South Africa, the majority of cheetahs are found in fenced reserves. Nonetheless, conflict between humans and cheetahs remains an issue here. Conservation effort in South Africa is also focussed on managing the geographically isolated cheetah populations as one large meta-population. Relocation is one option among a suite of tools used to resolve human-cheetah conflict in southern Africa. Successfully relocating captured problem cheetahs, and maintaining a viable free-ranging cheetah population, are two environmental issues in cheetah conservation forming the first case study in this thesis. The second case study involves the initiation of blooms of Lyngbya majuscula, a blue-green algae, in Deception Bay, Australia. L. majuscula is a toxic algal bloom which has severe health, ecological and economic impacts on the community located in the vicinity of this algal bloom. Deception Bay is an important tourist destination with its proximity to Brisbane, Australia’s third largest city. Lyngbya is one of several algae considered to be a Harmful Algal Bloom (HAB). This group of algae includes other widespread blooms such as red tides. The occurrence of Lyngbya blooms is not a local phenomenon, but blooms of this toxic weed occur in coastal waters worldwide. With the increase in frequency and extent of these HAB blooms, it is important to gain a better understanding of the underlying factors contributing to the initiation and sustenance of these blooms. This knowledge will contribute to better management practices and the identification of those management actions which could prevent or diminish the severity of these blooms.
New Cadmium(II) and Iron(II) Coordination Frameworks Incorporating a Di(4-Pyridyl)Isoindoline Ligand
Resumo:
Speech recognition in car environments has been identified as a valuable means for reducing driver distraction when operating non-critical in-car systems. Likelihood-maximising (LIMA) frameworks optimise speech enhancement algorithms based on recognised state sequences rather than traditional signal-level criteria such as maximising signal-to-noise ratio. Previously presented LIMA frameworks require calibration utterances to generate optimised enhancement parameters which are used for all subsequent utterances. Sub-optimal recognition performance occurs in noise conditions which are significantly different from that present during the calibration session - a serious problem in rapidly changing noise environments. We propose a dialog-based design which allows regular optimisation iterations in order to track the changing noise conditions. Experiments using Mel-filterbank spectral subtraction are performed to determine the optimisation requirements for vehicular environments and show that minimal optimisation assists real-time operation with improved speech recognition accuracy. It is also shown that the proposed design is able to provide improved recognition performance over frameworks incorporating a calibration session.