396 resultados para Slender steel-concrete composite buildings
em Queensland University of Technology - ePrints Archive
Optimum position of steel outrigger system for high rise composite buildings subjected to wind loads
Resumo:
The responses of composite buildings under wind loads clearly become more critical as the building becomes taller, less stiff and more lightweight. When the composite building increases in height, the stiffness of the structure becomes more important factor and introduction to belt truss and outrigger system is often used to provide sufficient lateral stiffness to the structure. Most of the research works to date is limited to reinforced concrete building with outrigger system of concrete structure, simple building plan layout, single height of a building, one direction wind and single level of outrigger arrangement. There is a scarcity in research works about the effective position of outrigger level on composite buildings under lateral wind loadings when the building plan layout, height and outrigger arrangement are varied. The aim of this paper is to determine the optimum location of steel belt and outrigger systems by using different arrangement of single and double level outrigger for different size, shape and height of composite building. In this study a comprehensive finite element modelling of composite building prototypes is carried out, with three different layouts (Rectangular, Octagonal and L shaped) and for three different storey (28, 42 and 57-storey). Models are analysed for dynamic cyclonic wind loads with various combination of steel belt and outrigger bracings. It is concluded that the effectiveness of the single and double level steel belt and outrigger bracing are varied based on their positions for different size, shape and height of composite building.
Resumo:
This study explored the flexural performance of an innovative Hybrid Composite Floor Plate System (HCFPS), comprised of Polyurethane (PU) core, outer layers of Glass-fibre Reinforced Cement (GRC) and steel laminates at tensile regions, using experimental testing and Finite Element (FE) modelling. Bending and cyclic loading tests for the HCFPS panels and a comprehensive material testing program for component materials were carried out. HCFPS test panel exhibited ductile behaviour and flexural failure with a deflection ductility index of 4. FE models of HCFPS were developed using the program ABAQUS and validated with experimental results. The governing criteria of stiffness and flexural performance of HCFPS can be improved by enhancing the properties of component materials. HCFPS is 50-70% lighter in weight when compared to conventional floor systems. This study shows that HCFPS can be used for floor structures in commercial and residential buildings as an alternative to conventional steel concrete composite systems.
Resumo:
Terrorists usually target high occupancy iconic and public buildings using vehicle borne incendiary devices in order to claim a maximum number of lives and cause extensive damage to public property. While initial casualties are due to direct shock by the explosion, collapse of structural elements may extensively increase the total figure. Most of these buildings have been or are built without consideration of their vulnerability to such events. Therefore, the vulnerability and residual capacity assessment of buildings to deliberately exploded bombs is important to provide mitigation strategies to protect the buildings' occupants and the property. Explosive loads and their effects on a building have therefore attracted significant attention in the recent past. Comprehensive and economical design strategies must be developed for future construction. This research investigates the response and damage of reinforced concrete (RC) framed buildings together with their load bearing key structural components to a near field blast event. Finite element method (FEM) based analysis was used to investigate the structural framing system and components for global stability, followed by a rigorous analysis of key structural components for damage evaluation using the codes SAP2000 and LS DYNA respectively. The research involved four important areas in structural engineering. They are blast load determination, numerical modelling with FEM techniques, material performance under high strain rate and non-linear dynamic structural analysis. The response and damage of a RC framed building for different blast load scenarios were investigated. The blast influence region for a two dimensional RC frame was investigated for different load conditions and identified the critical region for each loading case. Two types of design methods are recommended for RC columns to provide superior residual capacities. They are RC columns detailing with multi-layer steel reinforcement cages and a composite columns including a central structural steel core. These are to provide post blast gravity load resisting capacity compared to typical RC column against a catastrophic collapse. Overall, this research broadens the current knowledge of blast and residual capacity analysis of RC framed structures and recommends methods to evaluate and mitigate blast impact on key elements of multi-storey buildings.
Resumo:
Concrete-filled double skin tube (CFDST) is a creative innovation of steel-concrete-steel composite construction, formed by two concentric steel tubes separated by a concrete filler. Over the recent years, this column form has been widely used as a new sustainable alternative to existing structural bridge piers and building columns. Since they could be vulnerable to impact from passing vessels or vehicles, it is necessary to understand their behaviour under lateral impact loads. With this in mind, physical tests on full scale columns were performed using an innovative horizontal impact testing system to obtain the failure modes, the time history of the impact force, reaction forces and global lateral deflection as well as permanent local buckling profile of the columns. The experimental testing was complemented and supplemented by developing and using an advanced finite element analysis model. The model was validated by comparing the numerical results against experimental data. The findings of this study will serve as a benchmark reference for future analysis and design of CFDST columns.
Resumo:
Fire safety has become an important part in structural design due to the ever increasing loss of properties and lives during fires. Conventionally the fire rating of load bearing wall systems made of Light gauge Steel Frames (LSF) is determined using fire tests based on the standard time-temperature curve given in ISO 834 (ISO, 1999). The standard time-temperature curve given in ISO 834 (ISO, 1999) originated from the application of wood burning furnaces in the early 1900s. However, modern commercial and residential buildings make use of thermoplastic materials, which mean considerably high fuel loads. Hence a detailed fire research study into the performance of LSF walls was undertaken using the developed real fire curves based on Eurocode parametric curves (ECS, 2002) and Barnett’s BFD curves (Barnett, 2002) using both full scale fire tests and numerical studies. It included LSF walls without any insulation, and the recently developed externally insulated composite panel system. This paper presents the details of the numerical studies and the results. It also includes brief details of the development of real building fire curves and experimental studies.
Resumo:
An Australian manufacturer has recently developed an innovative group of cold-formed steel hollow flange sections, one of them is LiteSteel Beams (LSBs). The LSB sections are produced from thin and high strength steels by a patented manufacturing process involving simultaneous cold-forming and dual electric resistance welding. They have a unique geometry consisting of rectangular hollow flanges and a relatively slender web. The LSB flexural members are subjected to lateral distortional buckling effects and hence their capacities are reduced for intermediate spans. The current design rules for lateral distortional buckling were developed based on the lower bound of numerical and experimental results. The effect of LSB section geometry was not considered although it could influence the lateral distortional buckling performance. Therefore an accurate finite element model of LSB flexural members was developed and validated using experimental and finite strip analysis results. It was then used to investigate the effect of LSB geometry. The extensive moment capacity data thus developed was used to develop improved design rules for LSBs with one of them considering the LSB geometry effects through a modified slenderness parameter. The use of the new design rules gave higher lateral distortional buckling capacities for LSB sections with intermediate slenderness. The new design rule is also able to accurately predict the lateral distortional buckling moment capacities of other hollow flange beams (HFBs).
Study of the effectiveness of outrigger system for high-rise composite buildings for cyclonic region
Resumo:
The demands of taller structures are becoming imperative almost everywhere in the world in addition to the challenges of material and labor cost, project time line etc. This paper conducted a study keeping in view the challenging nature of high-rise construction with no generic rules for deflection minimizations and frequency control. The effects of cyclonic wind and provision of outriggers on 28-storey, 42-storey and 57-storey are examined in this paper and certain conclusions are made which would pave way for researchers to conduct further study in this particular area of civil engineering. The results show that plan dimensions have vital impacts on structural heights. Increase of height while keeping the plan dimensions same, leads to the reduction in the lateral rigidity. To achieve required stiffness increase of bracings sizes as well as introduction of additional lateral resisting system such as belt truss and outriggers is required.
Resumo:
The realistic strength and deflection behavior of industrial and commercial steel portal frame buildings are understood only if the effects of rigidity of end frames and profiled steel claddings are included. The conventional designs ignore these effects and are very much based on idealized two-dimensional (2D) frame behavior. Full-scale tests of a 1212 m steel portal frame building under a range of design load cases indicated that the observed deflections and bending moments in the portal frame were considerably different from those obtained from a 2D analysis of frames ignoring these effects. Three-dimensional (3D) analyses of the same building, including the effects of end frames and cladding, were carried out, and the results agreed well with full-scale test results. Results clearly indicated the need for such an analysis and for testing to study the true behavior of steel portal frame buildings. It is expected that such a 3D analysis will lead to lighter steel frames as the maximum moments and deflections are reduced.
Resumo:
The computational technique of the full ranges of the second-order inelastic behaviour evaluation of steel-concrete composite structure is not always sought forgivingly, and therefore it hinders the development and application of the performance-based design approach for the composite structure. To this end, this paper addresses of the advanced computational technique of the higher-order element with the refined plastic hinges to capture the all-ranges behaviour of an entire steel-concrete composite structure. Moreover, this paper presents the efficient and economical cross-section analysis to evaluate the element section capacity of the non-uniform and arbitrary composite section subjected to the axial and bending interaction. Based on the same single algorithm, it can accurately and effectively evaluate nearly continuous interaction capacity curve from decompression to pure bending technically, which is the important capacity range but highly nonlinear. Hence, this cross-section analysis provides the simple but unique algorithm for the design approach. In summary, the present nonlinear computational technique can simulate both material and geometric nonlinearities of the composite structure in the accurate, efficient and reliable fashion, including partial shear connection and gradual yielding at pre-yield stage, plasticity and strain-hardening effect due to axial and bending interaction at post-yield stage, loading redistribution, second-order P-δ and P-Δ effect, and also the stiffness and strength deterioration. And because of its reliable and accurate behavioural evaluation, the present technique can be extended for the design of the high-strength composite structure and potentially for the fibre-reinforced concrete structure.
Resumo:
This paper presents the details of experimental studies on the shear behaviour of a recently developed, cold-formed steel beam known as LiteSteel Beam (LSB). The LSB section has a unique shape of a channel beam with two rectangular hollow flanges and is produced by a patented manufacturing process involving simultaneous cold-forming and dual electric resistance welding. To date, no research has been undertaken on the shear behaviour of LiteSteel beams with torsionally rigid, rectangular hollow flanges. In the present investigation, experimental studies involving more than 30 shear tests were carried out to investigate the shear behaviour of 13 different LSB sections. It was found that the current design rules in cold-formed steel structures design codes are very conservative for the shear design of LiteSteel beams. Significant improvements to web shear buckling occurred due to the presence of rectangular hollow flanges while considerable post-buckling strength was also observed. Experimental results are presented and compared with corresponding predictions from the current design codes in this paper. Appropriate improvements have been proposed for the shear strength of LSBs based on AS/NZS 4600 design equations.