361 resultados para Situation Monitoring
em Queensland University of Technology - ePrints Archive
Resumo:
Restoring a large-scale power system has always been a complicated and important issue. A lot of research work has been done on different aspects of the whole power system restoration procedure. However, more time will be required to complete the power system restoration process in an actual situation if accurate and real-time system data cannot be obtained. With the development of the wide area monitoring system (WAMS), power system operators are capable of accessing to more accurate data in the restoration stage after a major outage. The ultimate goal of the system restoration is to restore as much load as possible while in the shortest period of time after a blackout, and the restorable load can be estimated by employing WAMS. Moreover, discrete restorable loads are employed considering the limited number of circuit-breaker operations and the practical topology of distribution systems. In this work, a restorable load estimation method is proposed employing WAMS data after the network frame has been reenergized, and WAMS is also employed to monitor the system parameters in case the newly recovered system becomes unstable again. The proposed method has been validated with the New England 39-Bus system and an actual power system in Guangzhou, China.
Resumo:
Management of the industrial nations' hazardous waste is a current and exponentially increasing, global threatening situation. Improved environmental information must be obtained and managed concerning the current status, temporal dynamics and potential future status of these critical sites. To test the application of spatial environmental techniques to the problem of hazardous waste sites, as Superfund (CERCLA) test site was chosen in an industrial/urban valley experiencing severe TCE, PCE, and CTC ground water contamination. A paradigm is presented for investigating spatial/environmental tools available for the mapping, monitoring and modelling of the environment and its toxic contaminated plumes. This model incorporates a range of technical issues concerning the collection of data as augmented by remotely sensed tools, the format and storage of data utilizing geographic information systems, and the analysis and modelling of environment through the use of advance GIS analysis algorithms and geophysic models of hydrologic transport including statistical surface generation. This spatial based approach is evaluated against the current government/industry standards of operations. Advantages and lessons learned of the spatial approach are discussed.
Resumo:
Animal models of critical illness are vital in biomedical research. They provide possibilities for the investigation of pathophysiological processes that may not otherwise be possible in humans. In order to be clinically applicable, the model should simulate the critical care situation realistically, including anaesthesia, monitoring, sampling, utilising appropriate personnel skill mix, and therapeutic interventions. There are limited data documenting the constitution of ideal technologically advanced large animal critical care practices and all the processes of the animal model. In this paper, we describe the procedure of animal preparation, anaesthesia induction and maintenance, physiologic monitoring, data capture, point-of-care technology, and animal aftercare that has been successfully used to study several novel ovine models of critical illness. The relevant investigations are on respiratory failure due to smoke inhalation, transfusion related acute lung injury, endotoxin-induced proteogenomic alterations, haemorrhagic shock, septic shock, brain death, cerebral microcirculation, and artificial heart studies. We have demonstrated the functionality of monitoring practices during anaesthesia required to provide a platform for undertaking systematic investigations in complex ovine models of critical illness.
Resumo:
Knowing when to compete and when to cooperate to maximize opportunities for equal access to activities and materials in groups is critical to children's social and cognitive development. The present study examined the individual (gender, social competence) and contextual factors (gender context) that may determine why some children are more successful than others. One hundred and fifty-six children (M age=6.5 years) were divided into 39 groups of four and videotaped while engaged in a task that required them to cooperate in order to view cartoons. Children within all groups were unfamiliar to one another. Groups varied in gender composition (all girls, all boys, or mixed-sex) and social competence (high vs. low). Group composition by gender interaction effects were found. Girls were most successful at gaining viewing time in same-sex groups, and least successful in mixed-sex groups. Conversely, boys were least successful in same-sex groups and most successful in mixed-sex groups. Similar results were also found at the group level of analysis; however, the way in which the resources were distributed differed as a function of group type. Same-sex girl groups were inequitable but efficient whereas same-sex boy groups were more equitable than mixed groups but inefficient compared to same-sex girl groups. Social competence did not influence children's behavior. The findings from the present study highlight the effect of gender context on cooperation and competition and the relevance of adopting an unfamiliar peer paradigm when investigating children's social behavior.