522 resultados para Simulating Materials Failure
em Queensland University of Technology - ePrints Archive
Resumo:
The mechanical strength and failure behavior of conventional and microstructured silica optical fibers was investigated using a tensile test and fracture mechanics and numerical analyses. The effect of polymer coating on failure behavior was also studied. The results indicate that all these fibers fail in a brittle manner and failure normally starts from fiber surfaces. The failure loads observed in coated fibers are higher than those in bare fibers. The introduction of air holes reduces fiber strength and their geometrical arrangements have a remarkable effect on stress distribution in the longitudinal direction. These results are potentially useful for the design, fabrication and evaluation of optical fibers for a wide range of applications.
Resumo:
Purpose: Heart failure (HF) is the leading cause of hospitalization and significant burden to the health care system in Australia. To reduce hospitalizations, multidisciplinary approaches and enhance self-management programs have been strongly advocated for HF patients globally. HF patients who can effectively manage their symptoms and adhere to complex medicine regimes will experience fewer hospitalizations. Research indicates that information technologies (IT) have a significant role in providing support to promote patients' self-management skills. The iPad utilizes user-friendly interfaces and to date an application for HF patient education has not been developed. This project aimed to develop the HF iPad teaching application in the way that would be engaging, interactive and simple to follow and usable for patients' carers and health care workers within both the hospital and community setting. Methods: The design for the development and evaluation of the application consisted of two action research cycles. Each cycle included 3 phases of testing and feedback from three groups comprising IT team, HF experts and patients. All patient education materials of the application were derived from national and international evidence based practice guidelines and patient self-care recommendations. Results: The iPad application has animated anatomy and physiology that simply and clearly teaches the concepts of the normal heart and the heart in failure. Patient Avatars throughout the application can be changed to reflect the sex and culture of the patient. There is voice-over presenting a script developed by the heart failure expert panel. Additional engagement processes included points of interaction throughout the application with touch screen responses and the ability of the patient to enter their weight and this data is secured and transferred to the clinic nurse and/or research data set. The application has been used independently, for instance, at home or using headphones in a clinic waiting room or most commonly to aid a nurse-led HF consultation. Conclusion: This project utilized iPad as an educational tool to standardize HF education from nurses who are not always heart failure specialists. Furthermore, study is currently ongoing to evaluate of the effectiveness of this tool on patient outcomes and to develop several specifically designed cultural adaptations [Hispanic (USA), Aboriginal (Australia), and Maori (New Zealand)].
Resumo:
"Seventeen peer-reviewed papers cover the latest research on the ignition and combustion of metals and non-metals, oxygen compatibility of components and systems, analysis of ignition and combustion, failure analysis and safety. It includes aerospace, military, scuba diving, and industrial oxygen applications. Topics cover: • Development of safe oxygen systems • Ignition mechanisms within oxygen systems and how to avoid them • Specific hazards that exist with the oxygen mixture breathed by divers in the scuba industry • Issues related to oxygen system level safety • Issues related to oxygen safety in breathing systems • Detailed investigations and discussions related to the burn curves that have been generated for metals that are burning in a standard test fixture This new publication is a valuable resource for professionals in the air separation industries, oxygen manufacturers, manufacturers of materials intended for oxygen service, and users of oxygen and oxygen-enriched atmospheres, including aerospace, medical, industrial gases, chemical processing, steel and metals refining, as well as to military, commercial or recreational diving."--- publisher website
Resumo:
With a monolayer honeycomb-lattice of sp2-hybridized carbon atoms, graphene has demonstrated exceptional electrical, mechanical and thermal properties. One of its promising applications is to create graphene-polymer nanocomposites with tailored mechanical and physical properties. In general, the mechanical properties of graphene nanofiller as well as graphene-polymer interface govern the overall mechanical performance of graphene-polymer nanocomposites. However, the strengthening and toughening mechanisms in these novel nanocomposites have not been well understood. In this work, the deformation and failure of graphene sheet and graphene-polymer interface were investigated using molecular dynamics (MD) simulations. The effect of structural defects on the mechanical properties of graphene and graphene-polymer interface was investigated as well. The results showed that structural defects in graphene (e.g. Stone-Wales defect and multi-vacancy defect) can significantly deteriorate the fracture strength of graphene but may still make full utilization of corresponding strength of graphene and keep the interfacial strength and the overall mechanical performance of graphene-polymer nanocomposites.
Resumo:
This paper proposes a new iterative method to achieve an optimally fitting plate for preoperative planning purposes. The proposed method involves integration of four commercially available software tools, Matlab, Rapidform2006, SolidWorks and ANSYS, each performing specific tasks to obtain a plate shape that fits optimally for an individual tibia and is mechanically safe. A typical challenge when crossing multiple platforms is to ensure correct data transfer. We present an example of the implementation of the proposed method to demonstrate successful data transfer between the four platforms and the feasibility of the method.
Resumo:
Over the last decade advanced composite materials, like carbon fibre reinforced polymer (CFRP), have increasingly been used in civil engineering infrastructure. The benefits of advanced composites are rapidly becoming evident. This paper focuses on the comparative performance of steel and concrete members retrofitted by carbon fibre reinforced polymers. The objective of this work is a systematic assessment and evaluation of the performance of CFRP for both the concrete and steel members available in the technical literature. Existing empirical and analytical models were studied. Comparison is made with respect to failure mode, bond characteristics, fatigue behaviour, durability, corrosion, load carrying capacity and force transfer. It is concluded that empirical expressions for the concrete-CFRP composite are not readily suited for direct use in the steel-CFRP composite. This paper identifies some of the major issues that need further investigation.
Resumo:
Plant food materials have a very high demand in the consumer market and therefore, improved food products and efficient processing techniques are concurrently being researched in food engineering. In this context, numerical modelling and simulation techniques have a very high potential to reveal fundamentals of the underlying mechanisms involved. However, numerical modelling of plant food materials during drying becomes quite challenging, mainly due to the complexity of the multiphase microstructure of the material, which undergoes excessive deformations during drying. In this regard, conventional grid-based modelling techniques have limited applicability due to their inflexible grid-based fundamental limitations. As a result, meshfree methods have recently been developed which offer a more adaptable approach to problem domains of this nature, due to their fundamental grid-free advantages. In this work, a recently developed meshfree based two-dimensional plant tissue model is used for a comparative study of microscale morphological changes of several food materials during drying. The model involves Smoothed Particle Hydrodynamics (SPH) and Discrete Element Method (DEM) to represent fluid and solid phases of the cellular structure. Simulation are conducted on apple, potato, carrot and grape tissues and the results are qualitatively and quantitatively compared and related with experimental findings obtained from the literature. The study revealed that cellular deformations are highly sensitive to cell dimensions, cell wall physical and mechanical properties, middle lamella properties and turgor pressure. In particular, the meshfree model is well capable of simulating critically dried tissues at lower moisture content and turgor pressure, which lead to cell wall wrinkling. The findings further highlighted the potential applicability of the meshfree approach to model large deformations of the plant tissue microstructure during drying, providing a distinct advantage over the state of the art grid-based approaches.
Resumo:
This thesis is a comprehensive study of deformation and failure mechanisms in bone at nano- and micro-scale levels. It explores the mechanical behaviour of osteopontin-hydroxyapatite interfaces and mineralized collagen fibril arrays, through atomistic molecular dynamics and finite element simulations. This thesis shows some main factors contributing to the excellent material properties of bone and provides some guidelines for development of new artificial biological materials and medical implants.
Resumo:
Silicon has demonstrated great potential as anode materials for next-generation high-energy density rechargeable lithium ion batteries. However, its poor mechanical integrity needs to be improved to achieve the required cycling stability. Nano-structured silicon has been used to prevent the mechanical failure caused by large volume expansion of silicon. Unfortunately, pristine silicon nanostructures still suffer from quick capacity decay due to several reasons, such as formation of solid electrolyte interphase, poor electrical contact and agglomeration of nanostructures. Recently, increasing attention has been paid to exploring the possibilities of hybridization with carbonaceous nanostructures to solve these problems. In this review, the recent advances in the design of carbon-silicon nanohybrid anodes and existing challenges for the development of high-performance lithium battery anodes are briefly discussed.
Resumo:
An unstructured mesh �nite volume discretisation method for simulating di�usion in anisotropic media in two-dimensional space is discussed. This technique is considered as an extension of the fully implicit hybrid control-volume �nite-element method and it retains the local continuity of the ux at the control volume faces. A least squares function recon- struction technique together with a new ux decomposition strategy is used to obtain an accurate ux approximation at the control volume face, ensuring that the overall accuracy of the spatial discretisation maintains second order. This paper highlights that the new technique coincides with the traditional shape function technique when the correction term is neglected and that it signi�cantly increases the accuracy of the previous linear scheme on coarse meshes when applied to media that exhibit very strong to extreme anisotropy ratios. It is concluded that the method can be used on both regular and irregular meshes, and appears independent of the mesh quality.