64 resultados para Simon ben Yohai, 2d entury.
em Queensland University of Technology - ePrints Archive
Resumo:
Hybrid face recognition, using image (2D) and structural (3D) information, has explored the fusion of Nearest Neighbour classifiers. This paper examines the effectiveness of feature modelling for each individual modality, 2D and 3D. Furthermore, it is demonstrated that the fusion of feature modelling techniques for the 2D and 3D modalities yields performance improvements over the individual classifiers. By fusing the feature modelling classifiers for each modality with equal weights the average Equal Error Rate improves from 12.60% for the 2D classifier and 12.10% for the 3D classifier to 7.38% for the Hybrid 2D+3D clasiffier.
Resumo:
For certain continuum problems, it is desirable and beneficial to combine two different methods together in order to exploit their advantages while evading their disadvantages. In this paper, a bridging transition algorithm is developed for the combination of the meshfree method (MM) with the finite element method (FEM). In this coupled method, the meshfree method is used in the sub-domain where the MM is required to obtain high accuracy, and the finite element method is employed in other sub-domains where FEM is required to improve the computational efficiency. The MM domain and the FEM domain are connected by a transition (bridging) region. A modified variational formulation and the Lagrange multiplier method are used to ensure the compatibility of displacements and their gradients. To improve the computational efficiency and reduce the meshing cost in the transition region, regularly distributed transition particles, which are independent of either the meshfree nodes or the FE nodes, can be inserted into the transition region. The newly developed coupled method is applied to the stress analysis of 2D solids and structures in order to investigate its’ performance and study parameters. Numerical results show that the present coupled method is convergent, accurate and stable. The coupled method has a promising potential for practical applications, because it can take advantages of both the meshfree method and FEM when overcome their shortcomings.
Resumo:
Summary Generalized Procrustes analysis and thin plate splines were employed to create an average 3D shape template of the proximal femur that was warped to the size and shape of a single 2D radiographic image of a subject. Mean absolute depth errors are comparable with previous approaches utilising multiple 2D input projections. Introduction Several approaches have been adopted to derive volumetric density (g cm-3) from a conventional 2D representation of areal bone mineral density (BMD, g cm-2). Such approaches have generally aimed at deriving an average depth across the areal projection rather than creating a formal 3D shape of the bone. Methods Generalized Procrustes analysis and thin plate splines were employed to create an average 3D shape template of the proximal femur that was subsequently warped to suit the size and shape of a single 2D radiographic image of a subject. CT scans of excised human femora, 18 and 24 scanned at pixel resolutions of 1.08 mm and 0.674 mm, respectively, were equally split into training (created 3D shape template) and test cohorts. Results The mean absolute depth errors of 3.4 mm and 1.73 mm, respectively, for the two CT pixel sizes are comparable with previous approaches based upon multiple 2D input projections. Conclusions This technique has the potential to derive volumetric density from BMD and to facilitate 3D finite element analysis for prediction of the mechanical integrity of the proximal femur. It may further be applied to other anatomical bone sites such as the distal radius and lumbar spine.
Resumo:
This dissertation is primarily an applied statistical modelling investigation, motivated by a case study comprising real data and real questions. Theoretical questions on modelling and computation of normalization constants arose from pursuit of these data analytic questions. The essence of the thesis can be described as follows. Consider binary data observed on a two-dimensional lattice. A common problem with such data is the ambiguity of zeroes recorded. These may represent zero response given some threshold (presence) or that the threshold has not been triggered (absence). Suppose that the researcher wishes to estimate the effects of covariates on the binary responses, whilst taking into account underlying spatial variation, which is itself of some interest. This situation arises in many contexts and the dingo, cypress and toad case studies described in the motivation chapter are examples of this. Two main approaches to modelling and inference are investigated in this thesis. The first is frequentist and based on generalized linear models, with spatial variation modelled by using a block structure or by smoothing the residuals spatially. The EM algorithm can be used to obtain point estimates, coupled with bootstrapping or asymptotic MLE estimates for standard errors. The second approach is Bayesian and based on a three- or four-tier hierarchical model, comprising a logistic regression with covariates for the data layer, a binary Markov Random field (MRF) for the underlying spatial process, and suitable priors for parameters in these main models. The three-parameter autologistic model is a particular MRF of interest. Markov chain Monte Carlo (MCMC) methods comprising hybrid Metropolis/Gibbs samplers is suitable for computation in this situation. Model performance can be gauged by MCMC diagnostics. Model choice can be assessed by incorporating another tier in the modelling hierarchy. This requires evaluation of a normalization constant, a notoriously difficult problem. Difficulty with estimating the normalization constant for the MRF can be overcome by using a path integral approach, although this is a highly computationally intensive method. Different methods of estimating ratios of normalization constants (N Cs) are investigated, including importance sampling Monte Carlo (ISMC), dependent Monte Carlo based on MCMC simulations (MCMC), and reverse logistic regression (RLR). I develop an idea present though not fully developed in the literature, and propose the Integrated mean canonical statistic (IMCS) method for estimating log NC ratios for binary MRFs. The IMCS method falls within the framework of the newly identified path sampling methods of Gelman & Meng (1998) and outperforms ISMC, MCMC and RLR. It also does not rely on simplifying assumptions, such as ignoring spatio-temporal dependence in the process. A thorough investigation is made of the application of IMCS to the three-parameter Autologistic model. This work introduces background computations required for the full implementation of the four-tier model in Chapter 7. Two different extensions of the three-tier model to a four-tier version are investigated. The first extension incorporates temporal dependence in the underlying spatio-temporal process. The second extensions allows the successes and failures in the data layer to depend on time. The MCMC computational method is extended to incorporate the extra layer. A major contribution of the thesis is the development of a fully Bayesian approach to inference for these hierarchical models for the first time. Note: The author of this thesis has agreed to make it open access but invites people downloading the thesis to send her an email via the 'Contact Author' function.
Comparison of standard image segmentation methods for segmentation of brain tumors from 2D MR images
Resumo:
In the analysis of medical images for computer-aided diagnosis and therapy, segmentation is often required as a preliminary step. Medical image segmentation is a complex and challenging task due to the complex nature of the images. The brain has a particularly complicated structure and its precise segmentation is very important for detecting tumors, edema, and necrotic tissues in order to prescribe appropriate therapy. Magnetic Resonance Imaging is an important diagnostic imaging technique utilized for early detection of abnormal changes in tissues and organs. It possesses good contrast resolution for different tissues and is, thus, preferred over Computerized Tomography for brain study. Therefore, the majority of research in medical image segmentation concerns MR images. As the core juncture of this research a set of MR images have been segmented using standard image segmentation techniques to isolate a brain tumor from the other regions of the brain. Subsequently the resultant images from the different segmentation techniques were compared with each other and analyzed by professional radiologists to find the segmentation technique which is the most accurate. Experimental results show that the Otsu’s thresholding method is the most suitable image segmentation method to segment a brain tumor from a Magnetic Resonance Image.
Resumo:
The most common human cancers are malignant neoplasms of the skin. Incidence of cutaneous melanoma is rising especially steeply, with minimal progress in non-surgical treatment of advanced disease. Despite significant effort to identify independent predictors of melanoma outcome, no accepted histopathological, molecular or immunohistochemical marker defines subsets of this neoplasm. Accordingly, though melanoma is thought to present with different 'taxonomic' forms, these are considered part of a continuous spectrum rather than discrete entities. Here we report the discovery of a subset of melanomas identified by mathematical analysis of gene expression in a series of samples. Remarkably, many genes underlying the classification of this subset are differentially regulated in invasive melanomas that form primitive tubular networks in vitro, a feature of some highly aggressive metastatic melanomas. Global transcript analysis can identify unrecognized subtypes of cutaneous melanoma and predict experimentally verifiable phenotypic characteristics that may be of importance to disease progression.