84 resultados para Silicon nitride ceramics
em Queensland University of Technology - ePrints Archive
Resumo:
Plasma enhanced chemical vapour deposition silicon nitride thin films are widely used in microelectromechanical system devices as structural materials because the mechanical properties of those films can be tailored by adjusting deposition conditions. However, accurate measurement of the mechanical properties, such as hardness, of films with thicknesses at nanometric scale is challenging. In the present study, the hardness of the silicon nitride films deposited on silicon substrate under different deposit conditions was characterised using nanoindentation and nanoscratch deconvolution methods. The hardness values obtained from the two methods were compared. The effect of substrate on the measured results was discussed.
Resumo:
To overcome major problems associated with insufficient incorporation of nitrogen in hydrogenated amorphous silicon nitride (a-SiNx:H) nanomaterials, which in turn impedes the development of controlled-bandgap nanodevices, here we demonstrate the possibility to achieve effective bandgap control in a broad range by using high-density inductively coupled plasmas. This achievement is related to the outstanding dissociation ability of such plasmas. It is shown that the compositional, structural, optical, and morphological properties of the synthesized a-SiNx:H nanomaterials can be effectively tailored through the manipulation of the flow rate ratio of the silane to nitrogen gases X. In particular, a wide bandgap of 5.21 eV can be uniquely achieved at a low flow rate ratio of the nitrogen to silane gas of 1.0, whereas typically used values often exceed 20.0. These results are highly-relevant to the development of the next-generation nanodevices that rely on the effective control of the functional nano-layer bandgap energies.
Resumo:
In order to provide realistic data for air pollution inventories and source apportionment at airports, the morphology and composition of ultrafine particles (UFP) in aircraft engine exhaust were measured and characterized. For this purpose, two independent measurement techniques were employed to collect emissions during normal takeoff and landing operations at Brisbane Airport, Australia. PM1 emissions in the airfield were collected on filters and analyzed using the particle-induced X-ray emission (PIXE) technique. Morphological and compositional analyses of individual ultrafine particles in aircraft plumes were performed on silicon nitride membrane grids using transmission electron microscopy (TEM) combined with energy-dispersive X-ray microanalysis (EDX). TEM results showed that the deposited particles were in the range of 5 to 100 nm in diameter, had semisolid spherical shapes and were dominant in the nucleation mode (18 – 20 nm). The EDX analysis showed the main elements in the nucleation particles were C, O, S and Cl. The PIXE analysis of the airfield samples was generally in agreement with the EDX in detecting S, Cl, K, Fe and Si in the particles. The results of this study provide important scientific information on the toxicity of aircraft exhaust and their impact on local air quality.
Resumo:
There has been a recent rapid expansion of the range of applications of low-temperature plasma processing in Si-based photovoltaic (PV) technologies. The desire to produce Si-based PV materials at an acceptable cost with consistent performance and reproducibility has stimulated a large number of major research and research infrastructure programs, and a rapidly increasing number of publications in the field of low-temperature plasma processing for Si photovoltaics. In this article, we introduce the low-temperature plasma sources for Si photovoltaic applications and discuss the effects of low-temperature plasma dissociation and deposition on the synthesis of Si-based thin films. We also examine the relevant growth mechanisms and plasma diagnostics, Si thin-film solar cells, Si heterojunction solar cells and silicon nitride materials for antireflection and surface passivation. Special attention is paid to the low-temperature plasma interactions with Si materials including hydrogen interaction, wafer cleaning, masked or mask-free surface texturization, the direct formation of p-n junction, and removal of phosphorus silicate glass or parasitic emitters. The chemical and physical interactions in such plasmas with Si surfaces are analyzed. Several examples of the plasma processes and techniques are selected to represent a variety of applications aimed at the improvement of Si-based solar cell performance. © 2014 Elsevier B.V.
Resumo:
Thermal properties, namely, Debye temperature, thermal expansion coefficient, heat capacity, and thermal conductivity of γ-Y 2Si2O7, a high-temperature polymorph of yttrium disilicate, were investigated. The anisotropic thermal expansions of γ-Y2Si2O7 powders were examined using high-temperature X-ray diffractometer from 300 to 1373 K and the volumetric thermal expansion coefficient is (6.68±0.35) × 10-6 K-1. The linear thermal expansion coefficient of polycrystalline γ-Y2Si2O7 determined by push-rod dilatometer is (3.90±0.4) × 10-6 K-1, being very close to that of silicon nitride and silicon carbide. Besides, γ-Y2Si2O7 displays a low-thermal conductivity, with a κ value measured below 3.0 W·(m·K) -1 at the temperatures above 600 K. The calculated minimum thermal conductivity, κmin, was 1.35 W·(m·K) -1. The unique combination of low thermal expansion coefficient and low-thermal conductivity of γ-Y2Si2O7 renders it a very competitive candidate material for high temperature structural components and environmental/thermal-barrier coatings. The thermal shock resistance of γ-Y2Si2O7 was estimated by quenching dense materials in water from various temperatures and the critical temperature difference, ΔTc, was determined to be 300 K.
Resumo:
Graphitic carbon nitride (g-C3N4), as a promising metal-free catalyst for photo-catalytic and electrochemical water splitting, has recently attracted tremendous research interest. However, the underlying catalytic mechanism for the hydrogen evolution reaction (HER) is not fully understood. By using density functional theory calculations, here we have established that the binding free energy of hydrogen atom (ΔGH∗0) on g-C3N4 is very sensitive to mechanical strain, leading to substantial tuning of the HER performance of g-C3N4 at different coverages. The experimentally-observed high HER activity in N-doped graphene supported g-C3N4 (Zheng et al., 2014) is actually attributed to electron-transfer induced strain. A more practical strategy to induce mechanical strain in g-C3N4 is also proposed by doping a bridge carbon atom in g-C3N4 with an isoelectronic silicon atom. The calculated ΔGH∗0 on the Si-doped g-C3N4 is ideal for HER. Our results indicate that g-C3N4 would be an excellent metal-free mechano-catalyst for HER and this finding is expected to guide future experiments to efficiently split water into hydrogen based on the g-C3N4 materials.
Resumo:
Carbon nanotubes (CNTs) are expected to become the ideal constituent of many technologes, in particular for future generation electronics. This considerable interest is due to their unique electrical and mechanical properties. They show indeed super-high current-carrying capacity, ballistic electron transport and good field-emission properties. Then, these superior features make CNTs the most promising building blocks for electronic devices, as organic solar cells and organic light emitting devices (OLED). By using Focused Ion Beam (FIB) patterning it is possible to a obtain a high control on position, relative distances and diameter of CNTs. The present work shows how to grow three-dimensional architecture made of vertical-aligned CNTs directly on silicon. Thanks to the higher activity of a pre-patterned surface the synthesis process results very quick, cheap and simple. Such large area growths of CNTs could be used in preliminary test for application as electrodes for organic solar cells.
Resumo:
An investigation has been made of the interactions between silicone oil and various solid substrates immersed in aqueous solutions. Measurements were made using an atomic force microscope (AFM) using the colloid-probe method. The silicone oil drop is simulated by coating a small silica sphere with the oil, and measuring the force as this coated sphere is brought close to contact with a flat solid surface. It is found that the silicone oil surface is negatively charged, which causes a double-layer repulsion between the oil drop and another negatively charged surface such as mica. With hydrophilic solids, this repulsion is strong enough to prevent attachment of the drop to the solid. However, with hydrophobic surfaces there is an additional attractive force which overcomes the double-layer repulsion, and the silicone oil drop attaches to the solid. A "ramp" force appears in some, but not all, of the data sets. There is circumstantial evidence that this force results from compression of the silicone oil film coated on the glass sphere.
Resumo:
In this paper, we report on a metal-catalyst-free synthesis of carbon nanotubes (CNTs) on a pre-patterned Si(001) surface. Arrays of triangular-shaped holes were created by nanoindentation in specific sites of the sample. After germanium deposition and chemical vapor deposition (CVD) of acetylene, a few CNTs nucleated and grew from germanium nanoparticles. These results illustrate that it is possible to control the growth of CNTs without the use of any metal catalyst. By leading the assembly of Ge nanoparticles with a patterning technique, a precise control over the growth order is also attainable.