34 resultados para Shlomo Ben Ami
em Queensland University of Technology - ePrints Archive
Resumo:
Lean body mass (LBM) and muscle mass remains difficult to quantify in large epidemiological studies due to non-availability of inexpensive methods. We therefore developed anthropometric prediction equations to estimate the LBM and appendicular lean soft tissue (ALST) using dual energy X-ray absorptiometry (DXA) as a reference method. Healthy volunteers (n= 2220; 36% females; age 18-79 y) representing a wide range of body mass index (14-44 kg/m2) participated in this study. Their LBM including ALST was assessed by DXA along with anthropometric measurements. The sample was divided into prediction (60%) and validation (40%) sets. In the prediction set, a number of prediction models were constructed using DXA measured LBM and ALST estimates as dependent variables and a combination of anthropometric indices as independent variables. These equations were cross-validated in the validation set. Simple equations using age, height and weight explained > 90% variation in the LBM and ALST in both men and women. Additional variables (hip and limb circumferences and sum of SFTs) increased the explained variation by 5-8% in the fully adjusted models predicting LBM and ALST. More complex equations using all the above anthropometric variables could predict the DXA measured LBM and ALST accurately as indicated by low standard error of the estimate (LBM: 1.47 kg and 1.63 kg for men and women, respectively) as well as good agreement by Bland Altman analyses. These equations could be a valuable tool in large epidemiological studies assessing these body compartments in Indians and other population groups with similar body composition.
Resumo:
In the present study, we examined the associations of early nutrition with adult lean body mass (LBM) and muscle strength in a birth cohort that was established to assess the long-term impact of a nutrition program. Participants (n = 1,446, 32% female) were born near Hyderabad, India, in 29 villages from 1987 to 1990, during which time only intervention villages (n = 15) had a government program that offered balanced protein-calorie supplementation to pregnant women and children. Participants’ LBM and appendicular skeletal muscle mass were measured using dual energy x-ray absorptiometry; grip strength and information on lifestyle indicators, including diet and physical activity level, were also obtained. Ages (mean = 20.3 years) and body mass indexes (weight (kg)/height (m)2; mean = 19.5) of participants in 2 groups were similar. Current dietary energy intake was higher in the intervention group. Unadjusted LBM and grip strength were similar in 2 groups. After adjustment for potential confounders, the intervention group had lower LBM (β = −0.75; P = 0.03), appendicular skeletal muscle mass, and grip strength than did controls, but these differences were small in magnitude (<0.1 standard deviation). Multivariable regression analyses showed that current socioeconomic position, energy intake, and physical activity level had a positive association with adult LBM and muscle strength. This study could not detect a “programming” effect of early nutrition supplementation on adult LBM and muscle strength.
Resumo:
Dual-energy X-ray absorptiometry (DXA) and isotope dilution technique have been used as reference methods to validate the estimates of body composition by simple field techniques; however, very few studies have compared these two methods. We compared the estimates of body composition by DXA and isotope dilution (18O) technique in apparently healthy Indian men and women (aged 19–70 years, n 152, 48 % men) with a wide range of BMI (14–40 kg/m2). Isotopic enrichment was assessed by isotope ratio mass spectroscopy. The agreement between the estimates of body composition measured by the two techniques was assessed by the Bland–Altman method. The mean age and BMI were 37 (SD 15) years and 23·3 (SD 5·1) kg/m2, respectively, for men and 37 (SD 14) years and 24·1 (SD 5·8) kg/m2, respectively, for women. The estimates of fat-free mass were higher by about 7 (95 % CI 6, 9) %, those of fat mass were lower by about 21 (95 % CI 218,223) %, and those of body fat percentage (BF%) were lower by about 7·4 (95 % CI 28·2, 26·6) % as obtained by DXA compared with the isotope dilution technique. The Bland–Altman analysis showed wide limits of agreement that indicated poor agreement between the methods. The bias in the estimates of BF% was higher at the lower values of BF%. Thus, the two commonly used reference methods showed substantial differences in the estimates of body composition with wide limits of agreement. As the estimates of body composition are method-dependent, the two methods cannot be used interchangeably
Resumo:
The Andhra Pradesh Children and Parents Study (APCAPS) was originally established to study the long-term effects of early-life undernutrition on risk of cardiovascular disease. Its aims were subsequently expanded to include trans-generational influences of other environmental and genetic factors on chronic diseases in rural India. It builds on the Hyderabad Nutrition Trial (HNT) conducted in 1987–90 to compare the effects on birthweight of a protein-calorie supplement for pregnant women and children. The index children of HNT and their mothers were retraced and examined in 2003–05, and the children re-examined as young adults aged 18–21 years in 2009–10. The cohort was expanded to include both parents and siblings of the index children in a recently completed follow-up conducted in 2010–12 (N = ∼6225 out of 10 213 participants). Recruitment of the remaining residents of these 29 villages (N = ∼55 000) in Ranga Reddy district of Andhra Pradesh is now under way. Extensive data on socio-demographic, lifestyle, medical, anthropometric, physiological, vascular and body composition measures, DNA, stored plasma, and assays of lipids and inflammatory markers on APCAPS participants are available. Details of how to access these data are available from the corresponding author.
Resumo:
Background: Undernutrition and physical inactivity are both associated with lower bone mass. Objective: This study aimed to investigate the combined effects of early-life undernutrition and urbanized lifestyles in later life on bone mass accrual in young adults from a rural community in India that is undergoing rapid socioeconomic development. Design: This was a prospective cohort study of participants of the Hyderabad Nutrition Trial (1987–1990), which offered balanced protein-calorie supplementation to pregnant women and preschool children younger than 6 y in the intervention villages. The 2009–2010 follow-up study collected data on current anthropometric measures, bone mineral density (BMD) measured by dual-energy X-ray absorptiometry, blood samples, diet, physical activity, and living standards of the trial participants (n = 1446, aged 18–23 y). Results: Participants were generally lean and had low BMD [mean hip BMD: 0.83 (women), 0.95 (men) g/cm2; lumbar spine: 0.86 (women), 0.93 (men) g/cm2]. In models adjusted for current risk factors, no strong evidence of a positive association was found between BMD and early-life supplementation. On the other hand, current lean mass and weight-bearing physical activity were positively associated with BMD. No strong evidence of an association was found between BMD and current serum 25-hydroxyvitamin D or dietary intake of calcium, protein, or calories. Conclusions: Current lean mass and weight-bearing physical activity were more important determinants of bone mass than was early-life undernutrition in this population. In transitional rural communities from low-income countries, promotion of physical activity may help to mitigate any potential adverse effects of early nutritional disadvantage.
Resumo:
Genome-wide association studies (GWASs) have been successful at identifying single-nucleotide polymorphisms (SNPs) highly associated with common traits; however, a great deal of the heritable variation associated with common traits remains unaccounted for within the genome. Genome-wide complex trait analysis (GCTA) is a statistical method that applies a linear mixed model to estimate phenotypic variance of complex traits explained by genome-wide SNPs, including those not associated with the trait in a GWAS. We applied GCTA to 8 cohorts containing 7096 case and 19 455 control individuals of European ancestry in order to examine the missing heritability present in Parkinson's disease (PD). We meta-analyzed our initial results to produce robust heritability estimates for PD types across cohorts. Our results identify 27% (95% CI 17-38, P = 8.08E - 08) phenotypic variance associated with all types of PD, 15% (95% CI -0.2 to 33, P = 0.09) phenotypic variance associated with early-onset PD and 31% (95% CI 17-44, P = 1.34E - 05) phenotypic variance associated with late-onset PD. This is a substantial increase from the genetic variance identified by top GWAS hits alone (between 3 and 5%) and indicates there are substantially more risk loci to be identified. Our results suggest that although GWASs are a useful tool in identifying the most common variants associated with complex disease, a great deal of common variants of small effect remain to be discovered. © Published by Oxford University Press 2012.
Resumo:
Background The Global Burden of Disease Study 2013 (GBD 2013) aims to bring together all available epidemiological data using a coherent measurement framework, standardised estimation methods, and transparent data sources to enable comparisons of health loss over time and across causes, age–sex groups, and countries. The GBD can be used to generate summary measures such as disability-adjusted life-years (DALYs) and healthy life expectancy (HALE) that make possible comparative assessments of broad epidemiological patterns across countries and time. These summary measures can also be used to quantify the component of variation in epidemiology that is related to sociodemographic development. Methods We used the published GBD 2013 data for age-specific mortality, years of life lost due to premature mortality (YLLs), and years lived with disability (YLDs) to calculate DALYs and HALE for 1990, 1995, 2000, 2005, 2010, and 2013 for 188 countries. We calculated HALE using the Sullivan method; 95% uncertainty intervals (UIs) represent uncertainty in age-specific death rates and YLDs per person for each country, age, sex, and year. We estimated DALYs for 306 causes for each country as the sum of YLLs and YLDs; 95% UIs represent uncertainty in YLL and YLD rates. We quantified patterns of the epidemiological transition with a composite indicator of sociodemographic status, which we constructed from income per person, average years of schooling after age 15 years, and the total fertility rate and mean age of the population. We applied hierarchical regression to DALY rates by cause across countries to decompose variance related to the sociodemographic status variable, country, and time. Findings Worldwide, from 1990 to 2013, life expectancy at birth rose by 6·2 years (95% UI 5·6–6·6), from 65·3 years (65·0–65·6) in 1990 to 71·5 years (71·0–71·9) in 2013, HALE at birth rose by 5·4 years (4·9–5·8), from 56·9 years (54·5–59·1) to 62·3 years (59·7–64·8), total DALYs fell by 3·6% (0·3–7·4), and age-standardised DALY rates per 100 000 people fell by 26·7% (24·6–29·1). For communicable, maternal, neonatal, and nutritional disorders, global DALY numbers, crude rates, and age-standardised rates have all declined between 1990 and 2013, whereas for non–communicable diseases, global DALYs have been increasing, DALY rates have remained nearly constant, and age-standardised DALY rates declined during the same period. From 2005 to 2013, the number of DALYs increased for most specific non-communicable diseases, including cardiovascular diseases and neoplasms, in addition to dengue, food-borne trematodes, and leishmaniasis; DALYs decreased for nearly all other causes. By 2013, the five leading causes of DALYs were ischaemic heart disease, lower respiratory infections, cerebrovascular disease, low back and neck pain, and road injuries. Sociodemographic status explained more than 50% of the variance between countries and over time for diarrhoea, lower respiratory infections, and other common infectious diseases; maternal disorders; neonatal disorders; nutritional deficiencies; other communicable, maternal, neonatal, and nutritional diseases; musculoskeletal disorders; and other non-communicable diseases. However, sociodemographic status explained less than 10% of the variance in DALY rates for cardiovascular diseases; chronic respiratory diseases; cirrhosis; diabetes, urogenital, blood, and endocrine diseases; unintentional injuries; and self-harm and interpersonal violence. Predictably, increased sociodemographic status was associated with a shift in burden from YLLs to YLDs, driven by declines in YLLs and increases in YLDs from musculoskeletal disorders, neurological disorders, and mental and substance use disorders. In most country-specific estimates, the increase in life expectancy was greater than that in HALE. Leading causes of DALYs are highly variable across countries. Interpretation Global health is improving. Population growth and ageing have driven up numbers of DALYs, but crude rates have remained relatively constant, showing that progress in health does not mean fewer demands on health systems. The notion of an epidemiological transition—in which increasing sociodemographic status brings structured change in disease burden—is useful, but there is tremendous variation in burden of disease that is not associated with sociodemographic status. This further underscores the need for country-specific assessments of DALYs and HALE to appropriately inform health policy decisions and attendant actions.
Resumo:
Background The Global Burden of Disease, Injuries, and Risk Factor study 2013 (GBD 2013) is the first of a series of annual updates of the GBD. Risk factor quantification, particularly of modifiable risk factors, can help to identify emerging threats to population health and opportunities for prevention. The GBD 2013 provides a timely opportunity to update the comparative risk assessment with new data for exposure, relative risks, and evidence on the appropriate counterfactual risk distribution. Methods Attributable deaths, years of life lost, years lived with disability, and disability-adjusted life-years (DALYs) have been estimated for 79 risks or clusters of risks using the GBD 2010 methods. Risk–outcome pairs meeting explicit evidence criteria were assessed for 188 countries for the period 1990–2013 by age and sex using three inputs: risk exposure, relative risks, and the theoretical minimum risk exposure level (TMREL). Risks are organised into a hierarchy with blocks of behavioural, environmental and occupational, and metabolic risks at the first level of the hierarchy. The next level in the hierarchy includes nine clusters of related risks and two individual risks, with more detail provided at levels 3 and 4 of the hierarchy. Compared with GBD 2010, six new risk factors have been added: handwashing practices, occupational exposure to trichloroethylene, childhood wasting, childhood stunting, unsafe sex, and low glomerular filtration rate. For most risks, data for exposure were synthesised with a Bayesian meta-regression method, DisMod-MR 2.0, or spatial-temporal Gaussian process regression. Relative risks were based on meta-regressions of published cohort and intervention studies. Attributable burden for clusters of risks and all risks combined took into account evidence on the mediation of some risks such as high body-mass index (BMI) through other risks such as high systolic blood pressure and high cholesterol. Findings All risks combined account for 57·2% (95% uncertainty interval [UI] 55·8–58·5) of deaths and 41·6% (40·1–43·0) of DALYs. Risks quantified account for 87·9% (86·5–89·3) of cardiovascular disease DALYs, ranging to a low of 0% for neonatal disorders and neglected tropical diseases and malaria. In terms of global DALYs in 2013, six risks or clusters of risks each caused more than 5% of DALYs: dietary risks accounting for 11·3 million deaths and 241·4 million DALYs, high systolic blood pressure for 10·4 million deaths and 208·1 million DALYs, child and maternal malnutrition for 1·7 million deaths and 176·9 million DALYs, tobacco smoke for 6·1 million deaths and 143·5 million DALYs, air pollution for 5·5 million deaths and 141·5 million DALYs, and high BMI for 4·4 million deaths and 134·0 million DALYs. Risk factor patterns vary across regions and countries and with time. In sub-Saharan Africa, the leading risk factors are child and maternal malnutrition, unsafe sex, and unsafe water, sanitation, and handwashing. In women, in nearly all countries in the Americas, north Africa, and the Middle East, and in many other high-income countries, high BMI is the leading risk factor, with high systolic blood pressure as the leading risk in most of Central and Eastern Europe and south and east Asia. For men, high systolic blood pressure or tobacco use are the leading risks in nearly all high-income countries, in north Africa and the Middle East, Europe, and Asia. For men and women, unsafe sex is the leading risk in a corridor from Kenya to South Africa. Interpretation Behavioural, environmental and occupational, and metabolic risks can explain half of global mortality and more than one-third of global DALYs providing many opportunities for prevention. Of the larger risks, the attributable burden of high BMI has increased in the past 23 years. In view of the prominence of behavioural risk factors, behavioural and social science research on interventions for these risks should be strengthened. Many prevention and primary care policy options are available now to act on key risks.
Resumo:
Obesity is globally prevalent and highly heritable, but its underlying genetic factors remain largely elusive. To identify genetic loci for obesity susceptibility, we examined associations between body mass index and approximately 2.8 million SNPs in up to 123,865 individuals with targeted follow up of 42 SNPs in up to 125,931 additional individuals. We confirmed 14 known obesity susceptibility loci and identified 18 new loci associated with body mass index (P < 5 x 10(-)(8)), one of which includes a copy number variant near GPRC5B. Some loci (at MC4R, POMC, SH2B1 and BDNF) map near key hypothalamic regulators of energy balance, and one of these loci is near GIPR, an incretin receptor. Furthermore, genes in other newly associated loci may provide new insights into human body weight regulation.
Resumo:
Waist-hip ratio (WHR) is a measure of body fat distribution and a predictor of metabolic consequences independent of overall adiposity. WHR is heritable, but few genetic variants influencing this trait have been identified. We conducted a meta-analysis of 32 genome-wide association studies for WHR adjusted for body mass index (comprising up to 77,167 participants), following up 16 loci in an additional 29 studies (comprising up to 113,636 subjects). We identified 13 new loci in or near RSPO3, VEGFA, TBX15-WARS2, NFE2L3, GRB14, DNM3-PIGC, ITPR2-SSPN, LY86, HOXC13, ADAMTS9, ZNRF3-KREMEN1, NISCH-STAB1 and CPEB4 (P = 1.9 × 10−9 to P = 1.8 × 10−40) and the known signal at LYPLAL1. Seven of these loci exhibited marked sexual dimorphism, all with a stronger effect on WHR in women than men (P for sex difference = 1.9 × 10−3 to P = 1.2 × 10−13). These findings provide evidence for multiple loci that modulate body fat distribution independent of overall adiposity and reveal strong gene-by-sex interactions.